Taking the work out of blockchain security

A W Roscoe and Wang Lei
Chieftin Lab, Shenzhen, and
University College Oxford Blockchain Research Centre

February 13, 2020

Abstract

The most convincing argument for proof of work in the mining of
public blockchains is, at least in our view, that it makes the creation
of a fake branch too difficult or impossible thanks to the follow the
longest chain principle. In this paper we suggest a modification to
the structure and protocol for blockchains that provides an alternate
possibility for this. Specifically we show how blockchains can develop
links in the opposite direction to the standard hashes of the hash chain
thanks to building in hooks that can later be used to attach further up
the chain. These, together with limited use of timing, can eliminate
any realistic possibility of a branch being plausible.

1 Introduction

A blockchain is a linked list of data blocks, each being within some size
limits (typically up to a few Mb) built using a specified format though with
no general limitation on what it can contain, with each containing a strong
cryptographic hash of its predecessor. The identity of the blockchain con-
tains the contents of “Genesis” Block 0, Byg. With that as its root, the
blockchain is thus a tree rooted at By: it is limited to the set of com-
pliant blocks where the hash pointers eventually lead to this root. Each
blockchain is also associated with rules about how new blocks are created in
a decentralised and distributed environment, which the said rules always en-
couraging agreement on a linear sequence of blocks starting with By, where
all branching away from that sequence is eventually disregarded. The hash
function is assumed to be preimage resistant and collision free, meaning that
for the life of the blockchain it is believed that it is essentially impossible
to calculate two values that hash to the same image, or a single value that

hashes to any image that has not itself been calculated with the function.
Similarly, someone who knows the value hash(z) but not cannot calculate
x unless they know x is drawn from a small enough range of values to try
them all. By this means, if we know a series of blocks where each contains
the hash of the previous one, and someone else contains a second such series,
and one contains By at the end, the two series are the same between any
member the two have in common and their joint end at By. When B,, is
in this sequence in the nth position, and no further branching is possible at
its own or a lower level according to the protocol for building blocks, then
we say that B, is immutable. Looking at the structure from the outside or
from the perspective of a single node, the immutable part can only grow.
The immutable sequence seen by a node may either equal or be a prefix of
the immutable sequence we see from the outside.

One of the core assumptions about blockchains is that they can contain
a limited number of bad nodes who may or may not follow the protocol.
Depending on the nature of the protocol it may be possible for such a node
to post a block at any time whose hash field is any chosen block B and
therefore a contender for B’s successor, even though the latter may already
have a successor and the new one has no hope of being accepted. When we
say that a block is immutable in such cases, we more precisely mean that no
block added by anyone at this or an earlier place would be believed by any
trustworthy node from the community running the blockchain according to
its rules.

The natural structure supported by hash links is not a chain but a tree
rooted at By. Every block in such a structure has an unambiguous number
of steps from By, and unless itself By has a unique predecessor that is one
step closer to By. The protocols creating blockchains are designed to ensure
that, except perhaps for a little temporary confusion about young blocks,
the substantive blockchain is a chain with no branching.

Though established mining protocols may create consensus and a grow-
ing immutable chain amongst an active community of users, some may be
fallible when it comes to unambiguously identifying the present head of the
chain to a potential new user. How does such a user know she is not being
presented with a fallacious branch rather than the official chain? That is
the problem this paper addresses.

In this paper we first set out our basic assumptions about blockchains
(Section 2) and discuss the nature of forks that attackers might attempt
in Section 3. In Section 4 we observe an important dichotomy in defence
strategies, while Section 5 shows how to introduce hooks into a blockchain,
our core idea that we assert can remove the need for PoW to eliminate

branching as well as improving basic security. These hooks are placed when
a block is laid down, and later attached further down the chain. In order
to give a strategy that covers all angles, we examine in Section 6 how to
cover the possibility that a node is presented with a candidate that only
forked recently from the official chain. In Section 7 we analyse an attacker’s
options for defeating this extra security and thereby derive parameters that
the blockchain and mining community must satisfy to prevent such attacks.

We believe that since the focus of a blockchain’s active participants is
around the head where new blocks are appearing, we need to develop ways
of making the older parts immune from attack. Hooks make a substantial
contribution to that security. The structures set out herein can improve
the security of any blockchain, but will be particularly applicable in public
blockchains where miner selection is not based on Proof of Work (PoW) [7],
but rather by some mechanism that makes a random selection of the next
miner from a large pool of able and willing parties, as for example is provided
by Proof of Stake (PoS) [?] and Work Your Stake (WyS) [?].

2 Blockchain assumptions

For us, a blockchain is a series of blocks each of which contains the strong
cryptographic hash of its predecessor, and where each of the blocks contains
a time-stamp which is strictly greater than that of the previous block and
which is closely related to the real time at which the block was posted.

For blocks posted at and around the true head of the blockchain, we
expect this to be managed by the general consensus and approval process.
For public blockchains, which is the class we mainly consider, at any time
there will be a community of interested parties, potentially miners and non-
miners, who monitor it and provide consensus. It is assumed that incentive
structures, which may be based on reward or reputation or both, motivate
most of the mining activity to be according to the blockchain’s rules.

A blockchain may be associated with some state that is stored relevant to
the construction of new blocks or other information relevant to the regions
around its head, such as the transaction pool of information that has been
proposed for insertion into new blocks, assertions made by nodes about
recent blocks, and information about the identities of participating nodes.
We want the long-term security of the chain (as opposed to the identities
using it) to depend only on structures within the blockchain itself.

In this paper we assume that miners are chosen by a stochastic process
from the willing in such a way that in any reasonably long run of blocks, it

is practically certain that the majority were created by good miners, namely
ones that follow the rules. Unfortunately we do not think it is realistic to
assume that all the miners — particularly the bad miners — act independently
of each other.

We expect there to be upper and lower bounds on the mining rate,
namely the number of blocks produced over intervals of time. In particular
it should not be plausible to have an extended time interval in which many
fewer or many more than than the intended number of blocks appear!. We
will make use of this assumption, in preventing accepance of one variety of
forking. Many readers will be familiar with the fact that the parameters of
the Bitcoin chain are adjusted regularly so that the rate of block production
is controlled statistically. In this regard we expect good nodes to have a
reasonably accurate notion of time, such as secure internal clocks, that they
can use to judge time related issues. These can of course be supplemented
with secure external sources of time information such as GPS when available.

The best-known way of managing the mining process is to allocate min-
ing rights using PoW, which has many positive qualities as well as the
well-known disadvantage of wasting energy. These include managing the
block creation rate, generating reasonably trustworthy random numbers,
and avoiding forking or branching.

In our view the strongest argument for PoW as opposed to other public
mining protocols is its resistance to branching. The assumption support-
ing this is that good miners outweigh bad ones in sheer mining power and
actually choose to use their power for this purpose, motivated by rewards.
Working together they can therefore create a longer chain satisfying the con-
ditions of PoW than the bad ones, meaning that if a potential user is aware
of both the genuine chain and a fraudulent one created as a branch, he or
she will always almost pick the genuine one, with the advantage growing as
time passes since the fork.

We are not aware of any watertight means of supporting this type of
security with other mining protocols such as PoS, where potentially a bad
miner could create a fork many blocks before the present head, possibly
helped by some weakening in the cryptography used at the time that part
of the real chain was created, of using some other strategy such as the one
we develop in the next Section. He could then extend the branch to the
present day with many false blocks (incorporating false time-stamps) when

! Alternatively we could imagine that if there were, exceptionally, a long time gap,
additional security measures will be placed in the block after the gap, which could include
approvals by many participants according to some rules.

he did not have the actual speed limit that PoW imposes, as opposed to a
rule-imposed one.

In creating a blockchain, we are free to lay down rules for how blocks are
formatted and what the fields of a block are intended to be used for. We can
set out rules for what conditions must hold for something to be accepted into
the chain, whether it is a piece or data, a transaction or a block. Essentially
what we are doing here is proposing extra data to be included in blocks and
rules for what is expected of miners and under what conditions they receive
mining rewards.

The main contribution of this paper is showing how the judgement of the
population of block creators in the run up to a given one can contribute suffi-
cient backing to the true chain to allow those to joining nodes to distinguish
between it and competitors indefinitely.

3 Forks and branching

In a public blockchain anyone can propose an extra node that points at
some block other than the last one. Where this is near the proper head
in steps through the tree, this can be part of the normal mining protocol
and it is possibly proposed as an alternative, hoping to win a legitimate
place in the chain in place of others. We do not regard this as a fork, which
(when not officially sanctioned) means an attempt to create an alternative
and presumable bogus history as a plausible alternative to the official one
that already exists. We expect the process of selecting the correct branch to
follow and getting consensus on it to be the business of the mining protocol.
The details of the mining protocol are not the topic of this paper, but we
term the growing chain of blocks it produces the official chain. Our business
is to find ways of preventing anyone from being deceived into thinking that
a block that is not part of the official chain is one.

What we need to do is avoid forks of the sorts illustrated in Figure 1,
where the branch may occur well behind the current mining face. An at-
tacker might create a new block that points directly at a block in the official
chain, as with the forks leading to Fj,,g and Fiper¢ in the figure. Or it might
use a pre-existing block that was discarded in the mining process, as in the
fork leading to Fj,5. In either case the attacker can make use of identities
and computing under his control to build a chain beyond this, containing
whatever he likes within his power to create it.

In the figure, real time, as approximated by time stamps, increases from
left to right, and hash links point from right to left where shown.

!/|) I:short
Official chain: immutable
Discarded block

Under consideration by mining algorithm

imb

-a O e e

Many linked

Part of attempted forking branch ~ — — — — —
blocks

Figure 1: Types of fork

The mining protocol may or may not give rational and locally checkable
reasons why it was correct to follow the official branch rather than the one
leading to Fiong, Fimp OF Fypere, O it may not be so explainable. Even if it
is, we might fear that as time progresses and cryptographic primitives used
at the time that the root of the respective fork was created. In that case it
might be possible for an attacker to create block(s) with forged time-stamps
much earlier than they were actually built, which are plausible successors to
blocks already present.

An interesting alternate attack strategy is that our attacker C' might
legitimately gain the right to propose a block B,: the prior blocks may
thus confirm his right to do so. But he does not use it, and the chain
selects a reserve party to create the official block B,. Much later, C might
create an alternate history starting from his own version of B,,: under many
assumptions this will be possible and not require any broken ciphers or
hashes. PoW beats this attack (which there would be an attacker finding a
solution to the hash puzzle posed by B,,—1 and not using it till much later),
as will our own approach.

In the methods developed in this paper, we do not discriminate between
the cases of a fork being built on the main chain or on a discarded node,
noting that depending on circumstances either might give the attacker an

advantage. What we do distinguish are long forks, as shown here to Fj,,g,
and short ones as shown to Fyp,,+ and Fj,,;,. Note that in Fj,,;, there is a
huge imbalance between the lengths of the two arms of the fork, with imb
standing for imbalanced.?

We concentrate mainly on making long forks unbelievable, but will also
address short ones.

4 Heads up, heads down

Though the longest chain model under PoW gives a powerful security argu-
ment, a little thought reveals that it only works when whoever is presented
with another candidate is aware of the existence of the head of the real chain
as a second candidate and can analyse it. In other words if Alice, who is
trying to decide whether a proposed head is genuine or not, has not kept her
“head up” to see what is going on, she may not be aware of longer chains
that beat the one she is testing.

Of course this may not be because of laziness on her part: because of the
vagaries of decentralised systems she may be temporarily disconnected from
the part of store where the head of the official chain sits. There is no such
uncertainty in checking that a putative block is a descendant of the root
block By: simply follow pointers back. If in the latter process some data
is temporarily unreadable, there is no ambiguity that it is still the correct
data and has to be read.

This last process is “heads-down”, in the sense that the algorithm simply
follows a path it is led down without any searching for “better” data. In a
world of poor communication, either sort may be blocked from proceeding,
but a heads-down process will know it is blocked whereas a heads-up one may
give the wrong answer. We have no doubt that heads-down security checks
are preferable to heads-up ones, since they should both be more efficient and
more certain.

Of course in avoiding all sorts of forks, it may or may not be possible to
avoid heads-up checks completely. We will see later that heads-up is still a
valuable back-up to our proposal for a structure that makes it less necessary.

2In this context, to be imbalanced, there should be a significant difference in the two
legs: in fact one of them should break the rules on how fast blocks may be generated on
the assumption that the block at the head of each is reasonably new.

5 Hooks

In this section we propose a model that allows us to move the responsibility
for eliminating forking, at least of a certain sort, away from the mining
model and into the basic structure of the chain itself. Specifically we seek
to remove the need for the main argument for security to be heads-up as
described in the last section.

In its pure form a public blockchain is the values of the blocks that make
it up. It is not determined by where it is stored, because this changes (along
with replication) as the blockchain evolves. It is created by a population of
participating nodes that varies over time, and over whom there needs to be
some trust assumption. We probably need to assume that this assumption
has always been true, not just that it is true now.

We would expect that at any time the chain will consist of a sequence
of blocks, possibly numbering in the millions or beyond, starting at a block
By that contains initial conditions and rules, linked by the fact that the
n 4 1th block contains a strong cryptographic hash of the nth. Around the
head, where new blocks are being created, there may be several contenders
and other data structures. We would expect old blocks to become settled
and uncontroversial, as indeed they must be thanks to the hash links for
someone who knows a newer one. It must never be forgotten that thanks to
the properties of hashing, any block determines a unique series of predeces-
sors, and that any assurance that block B,, is genuine member of the chain
automatically ensures that each of these predecessors is too.

The main purpose of the present exercise is to show how to ensure that
someone who only knows the value of By can join the chain securely, depend-
ing solely on the state of the blockchain rather than depending on properties
of the network. The following sets out the assumptions we make:

e Everyone understands that the blockchain is identified by its root block
By: that means the value of it, not any specific memory location.

e The creator of By is assumed to be completely trustworthy at the time
By was created and for a suitable period afterwards.

e At any time there will be a collection Active of active nodes who are
interfacing with the blockchain. All have a currently reliable signature
method. We assume that always a majority of these are reliable, in
the sense that they are both responsive and supporting rather than
undermining the protocols. So they are good rather than bad.

e The nodes in Active all have good knowledge of what is happening
at and around the head of the chain. At least the good nodes in
Active will, unless they have very recently become active, be aware of
meaningful activity at and around the head.

e As blocks become immutable, the nodes of Active become aware of
this. Eventually the fact that a block is immutable will be common
knowledge: all of Active and any users who are simply observing know
it is immutable and that all understand they have common knowledge
of this.

e Nodes can leave and join Active. The crucial feature we pay attention
to is how a node joins: it needs to know the values of blocks at the
head of the chain: we pay attention to what it must do to to identify
these.

e We anticipate that once a node has successfully identified the head of
the blockchain, it will become familiar with the activities around it
and be able to follow the development of the blockchain accurately. It
will follow the development of the official chain as long as it remains
Active.

The basic structure of a blockchain, namely blocks in which each contains
the hash of its predecessor, with the ultimate predecessor being the start
block By that represents the chain, implies a tree rather than a chain. It
relies on ever-developing consensus to pick a single successor, but in the
standard data structure there is nothing to enforce this. We regard the
initial establishment of consensus amongst the currently active nodes Active
as a different subject from keeping that consensus visible to all for nodes
outside Active.

Imagine the following scenario: block B, was established some time
ago, and B, shortly after as its successor. Potentially the cryptographic
signatures associated with the nodes involved have weakened and/or the
nodes involved have gone offline. Whether using these things or not, an
attacker constructs a plausible successor for By, namely B/, 11, and as many
further successors B],, (m > n+ 1) to this as it likes. Such a series of nodes
is almost certainly associated with a community of identities controlled by
the attacker. We would like the blocks to contain structure that would allow
the joining node C' to recognise such a branch even though he has never seen
any of the B, for m > n.

Presented with one of the BJ, as being at the end of the chain, with
presumably all the agents apparently creating these fake blocks under the
control of the attacker, how can C' tell the difference? One way might be to
look around (heads up) and see what other independent people think, but
it would be better not to have to.

Our proposal, based on the above assumptions, manages to manufacture
upward pointing links (which we term hooks because of the way they work,
into the blockchain in addition to the traditional downward pointing ones.
They have essentially the qualities of links pointing in the other directions
from the usual ones in a blockchain. Since we cannot modify existing blocks
these have to be placed subtly. This is done by showing they have been
created by the same parties as the preceding block and not requiring any
other information about the parties or from outside the blockchain. These
are individually not so secure since they depend to a greater extent on
the trustworthiness of the said nodes, but we use them with considerable
redundancy so that the presence of a proportion of bad miners amongst
successful miners does not destroy security. How large a proportion will be
the topic of later sections.

The proposal is as follow: a number s is chosen so that it is believed
certain that of any s consecutive blocks of the official chain, a reasonable
number will have been mined by trustworthy and honest nodes. We will
examine what “reasonable” means here later. On the assumption that the
mining protocol picks the miners of blocks independently and at random
in such a way that each is good with probability at least p and bad with
probability at most ¢ = 1 — p (¢ thus being an assumed upper bound on
the proportion of mining power as time progresses®), the number of good
miners in any s is binomially distributed, so it is never completely certain
that £ > 0 of any s will be good, but we can get close. For example if s
is 100, p = ¢ = 0.5 and “reasonable” means at least 10 then the standard
deviation of the distribution is 5 and the probability that there are not a
reasonable number is less than 1071, If p = 0.75 so ¢ = 0.25 and s = 160
and “reasonable” means at least 81 (i.e. more than half) then the standard
deviation o is 1/(480/16) = v/30 which is close to 5.5 and the probability

3In general this calculation and subsequent ones in this paper based on assumed pro-
portions of good and bad miners may need to be adjusted for two factors. The first is
that some good nodes may choose not to mine, if this is permitted. Of course we could
make mining compulsory or highly incentivised. In either case we would need to ensure
that, unlike PoW where specialised hardware is in reality required, it is accessible. The
second is that the selection will in all likelihood be biased by ownership of some resource
such as stake or equipment.

10

only slightly greater. (Both require exceptions of about 8c.)
In our hooking protocol:

e The creator A, of each block B,, is obliged to include a fresh public key
PK,, in it, of which only she knows how to create the corresponding
signatures. (Note that though the B, are necessarily different from
each other, the A, need not be.) She is obliged to use that key only
once for anything that could be construed a hooks, and only over a
highly constrained time. In fact we will normally assume she uses it
exactly once in total. Using it outside these restrictions, or not at all
when it should, attracts a penalty. We imagine that the most likely
form of the public key will be a Lamport [?] one or a more space ef-
ficient hash-based one-time key (e.g., using the Winternitz scheme [?]
or a variant) because of their intrinsic quantum resistance. The choice
will be based on the trade off between the sum of the sizes of the pub-
lic key and signature (each of which appears once in the blockchain, a
replicated structure) and the creation (once per signature) and check-
ing (probably many times) per signature. For this particular purpose,
structures such as Merkle trees that allow multiple use of hash based
keys are probably redundant. At the time the key is placed in the
block we think of it as a hook dangling from the chain which still has
to be placed higher up.

e A, is obliged to stay in Active and watch the development of the chain
until she sees that block B, is immutable.

e At that point she signs By, using PK,, and makes the signature under
available for inclusion in the blockchain, for example as a transaction,
and watches to make sure it is included. (Replication of the signature
over multiple blocks is allowed, but not needed.)

e Before such a signature is included in block m for m > n + s it is
checked, so only accurate signatures make it in: a block with an inac-
curate signature will be rejected as invalid.

e The creators of block B, and B,, thus cooperate in taking the hook
that is dangling from B,, and attaching it to Bj4s.

e Once that signature has been registered and the hook completed, the
role of the agent A, creating it disappears: A, can forget the secret
key, and it would be better if she did since then if A,, is later corrupted
the key cannot be compromised. It is best not to think that A, has

11

Usual hash links

N

Bn

N
Tt 4

B, has just been proposed
Public key material is unused hook A
b S

P

Figure 2: The root of the hook anchored in B,,.

signed B, but rather that B,, has: the hook exists solely within the
blockchain, just like regular links do.

The development of a single hook is illustrated in the following figures.
In practice the gaps between the blocks involved would probably be rather
larger than is illustrated here. Figure 2, shows the initial state of the hook,
namely the public key material that has been placed in B,,. Naturally this
block itself does not change, but the key material forms the basis of the
hook that A, will later make available about B, for A, to place in B,.
Figure 3 shows the state where B, has been placed in the chain, but is
not yet settled enough to be signed.

Figure 4 shows the signature created but waiting to be placed. Note that
the two blocks following B, ;s were probably placed before the signature
was available to include in them. The signature that represents the hook is
proposed by one node (A4,,) and checked several times: the first necessary
one is the agent A, who includes it on B,. Finally, in Figure 5 the hook has
been adopted into block B,, which can be expected to become immutable
before too long. The acceptance criteria for B, will include ones about the
hook: it must be well-formed and be a correct signature using B,’s key
material of B, s, which is a predecessor of B,: thus this is a further round
of checking of the hook.

Figure 5 shows that the hook from B, to Bj,is has components which
sit in B,, and B,, but none in Bjs.

12

Usual hash links

<€

B, is now immutable .

Public key material is in B, unused A

B,. exists but not yet known to be immutable O
So hook not yet used

Figure 3: A,, can now see B, but not yet sign it.

Usual hash links
<3

B Bn+5

n

888800

\
\]
N e I -
Public key material is in B, A

At this stage the sighature/hook is outside the chain, unchecked +
Maybe transaction pool

Figure 4: B, s has been signed, but the hook has not yet been adopted into
the chain.

13

Usual hash links

Public key material is in B, A

The creator of B,, used the corresponding secret key to sign B,,.and for nothing else
That signature now placed in some later B,

Completed hook.

Figure 5: The hook is now in block B,. the chain.

This process can be seen evolving along the chain in Figure 6, where the
further right one goes the less evolved the hooks are, since the blocks are
younger. Note that the first hook is into B,. Note also that the assumption
that the creator of By is trustworthy implies that any block history with a
B! that is not the one certified in By’s hook must be fraudulent.

For simplicity this picture assumes that r is a constant greater than
n + s for all hooks, and so each block contains only one. This makes the
figure more understandable. Note also that we have coded the status of each
hook in colour and possible dashes and dots. In future figures we will omit
the explicit role of B, and have the hook involving only B,, and B, but
maintain the colour and line-type coding. Figure 7 shows exactly the same
state as Figure 6.

It is easy to incentivise both the creation of hooks and their inclusion
in later blocks: all or part of the mining fee for the block in which the key
was registered can depend upon the signature, and attractive mining fees
can be associated with including the signature in a later block. Where, as
proposed in [?], prospective miners have to offer a good behaviour deposit
to be allowed to mine, we can amplify the incentive to provide signatures
by forfeit of that.

We can thus rely on good miners (a) generating hooks and (b) including

14

Usual hash links

Public key material A - ~& Completed hook
= = =~ a Computed but unplaced hook

Arrows represent
==7"=~4 Unused hook

signatures located
Unchecked i

Figure 6: Chain showing multiple hooks at different stages.

Usual hash links

= ™ Completed hook

= = =~ a Computed but unplaced hook
=~7 %=~ Unused hook

Figure 7: Chain of Figure 6 in simplified notation.

15

available ones in blocks unless they are out of action or have their commu-
nication blocked. We can rely on them not re-using their PK,s. The failure
of bad miners to generate hooks or failure to include others’ hook signatures
in the blocks they build will advertise their bad status, which we would not
generally expect unless an attack with a good chance of success is under
way. Note also that if a hook is available for inclusion in a block, and a
(bad) miner fails to include it at block m, then in the next few there will
probably be a good miner who will include it.

The fact that bad miners are highly incentivised, in the normal run of
events, to generate good hooks, can play a positive role in the protocol for
detecting forks.

Initialisation

We can say that the hook from B, to B, s covers each node B; between
these two, and implies that B, backs the fact that B, is followed in the
chain by B,+1 whenever n < m and m + 1 < Bjp4s, as Byt is certainly
preceded by the sequence from B,, to Bpis_1.

The observant reader will have noted that while there ought to be s
distinct hooks covering every consecutive pair of blocks in the central portion
of the blockchain, this is not true at the beginning and end of the chain
because this would have to stretch s blocks to both left and right for this to
be true. Protecting links near the end of the chain is covered in Section 6
as they give rise to short forks.

We should also pay some attention to the initial portion of the chain.
Until s blocks have been established there are no completed hooks at all,
but there can be no long forks.

Working in our favour is the fact that the creator of By is completely
trusted. Thus the fact that the first hook is created by the creator or
By seems to give it complete authority and, once this hook is present, no
possibility of a fork succeeding in the first s blocks: we remarked above that
to be believed every possible version of the chain must include the unique
B, certified by By. Until the hook from By is present, all block creators
remain in Active.

Testing a block

The effect of hooks on a fork is shown in Figure 8. If the signature protocol
has been complied with throughout a blockchain’s evolution in the sense
that every good node creating a block has introduced a hook to block B, s,

16

Immutable block in official chain —_

Completed hook
= = ~a Computed but unplaced hook

Block with illegal double hook —===<, Unused hook

Fork block with no hook U U provisional blocks

Fork block with hook

Figure 8: A fork, assuming complete hooks in official chain

17

then a tester presented with a supposed block B of it can follow the following
algorithm:

e The hash pointers are followed back to their root. If this is not By,
then B is not part of its blockchain.

o If B is at level n we will call it By, and its level-m predecessor (m < n)
B,,. If B, is not part of the official chain then this is true for some
first B;, amongst its predecessors, or B,, is itself the first such not to
be in the official chain. We will assume that the tester carries out a
search for such an m starting from s, which it tests using the known-
to-be-trustworthy attestation of B by By: if this checks out then all
blocks up to B are official. If not then By and hence all B,,, for m > s
are not. So below we assume m > s.

e Then for some known constant 7, if m < n — r, there should be
a hook from B,,_s to B,;, to be found in a block between B,
and B,: namely a signature of B,, checkable using the public key
found in B,,—s. If m < n — r — s there should be hooks from blocks
Bp—sy...,Bp—1to By, ..., Bnis—1, each of which represents a sepa-
rate attestation to B,, by an earlier block. The checker should count
how many of these are actually present. If they all are, then B,, can
be assumed to be official, if none are then it can be assumed to be
bogus.

In effect Figure 8 shows that if the official chain has a complete set
of hooks, and we assume that any link without all hooks is suspect,
then this gives perfect discrimination unless there are s consecutive
bad miners: ones who might double sign. In the illustrated example
s = 3 (much smaller than in practice) and one of the s nodes required
to certify the fork has done so, but not the other two, leaving two
uncertified blocks in positions where we would expect them to have
been certified.

If some are present and some are not and we are not sure the complete-
hook assumption is valid, then we will need a protocol for deciding
the answer based on the circumstances of the blockchain and possibly
additional tests. We will discuss this topic in later sections.

e If m > n —r — s then there may not be enough hooks in the chain
to determine the above. It may be possible to find some in the place
that hooks are put before being transferred to the chain, e.g. the
transaction pool, but still there may not be enough. If so then m is

18

within about s of the claimed current block and so if it is the first
branching block then the fork is definitely short, and we have to guard
against the cases Fspore and Fj,p from Figure 1. We will deal with
this case in Section 6.

6 Rejecting shorter branches

Note firstly that if a node A is presented with a block B that is claimed to
belong to the blockchain, she has no idea whether it is or not, and if it is not
but does ultimately lead to By, she has no idea where the inevitable fork
is. It follows that as well as using main hooking protocol to eliminate long
forks, she also needs to eliminate the possibility that there are shorter ones.

Suppose we have a fork that is not many blocks behind the one that
an attacker is falsely proposing as the head of the chain. As the length
of this gap grows, the protection from hooks improves. It follows that one
strategy that someone judging such a block might adopt is simply to wait
until the hook-based protection will be strong enough because B itself will
have developed multiple successors in a process that the checker can follow.
The checker can also search for hooks not only in these blocks but also in
the transaction pool.

We can include in the protocol to expect nodes that have not yet provided
their hook to provide a signed copy of what they each believe is the end of
the chain, which are accessible in some place like the transaction pool, but
do no have to be stored in the chain or be long-lasting signatures.

Depending on the nature of the public key stored for the hooks, as it
would have to be capable of supporting multiple signatures, such interme-
diate evidence might be signed with that. In that case these would have to
be explicitly distinguishable from hooks. Or some other key could be used.

With such additional places to look where recent block creators can place
such information, if this is included in the protocol we can simply aggregate
the available hooks with the opinions of a given B,,’s predecessors that do
not yet have one and apply the same criteria we would if all relevant hooks
were present.

We note that the case Fj,;, can be eliminated by refusing to accept
candidate blocks whose path to By fails block-creation requirements. Thus
the attacker will not be successful if they present a short fork from an old
block.

A node that is presented with a claimed head of the chain might thus
seek to confirm it is not the result of a recent fork by some combination

19

Nodes with missing backlinks because bad nodes
chose not to not provide one

PETTIIR AL

¥ ¥
Part of official chain
Nodes with missing backlinks because good nodes

"'-‘-‘-,: will not provide one
l Block mined et +— Hash link (R to L)
bybadnode el » Backlink (L to R)

. Block mined Block that is part of

by good node attempted fork

Figure 9: Possible behaviour of bad nodes versus hooks

of the above: looking at the existing links, hooks and approvals, examining
the time-stamps on apparently recent nodes and perhaps examining the
consensus process. And perhaps waiting for the chain to develop further.

For the rest of this paper we will analyse the game between good and
bad miners that hooks inspire.

7 Attacking hooks

If the hooking protocol is complied with, at least as far as what is visible
and checkable in the chain, then it provides watertight security against long
forks. But what if it is not: what if bad miners, having successfully had their
blocks adopted and become immutable, choose not to provide the signatures
for inclusion further down the chain? What if they sign alternative blocks,
as well as or instead of the ones they were meant to? What can we do about
this? How much of this activity can we tolerate? In this section we answer
the second of these questions.

Some of the concepts discussed here are illustrated in Figure 9, which
shows that (made more plausible by the small range s used in it) control of

20

sufficient mined blocks by bad nodes can make the distinction between good
blocks and forks difficult.

We assume that the fork detection protocol is modified so that it only
accepts a chain as genuine if, in each s consecutive blocks, at least L of
them have the expected signatures. Note that in the figure, bad node A has
provided a double hook, namely one each for the official and fork chain. On
the other hand bad node B has only provided one for the fork.

Two things can go wrong with the use of hooks thanks to such an attack:

o A false positive: the protocol certifies a fork as the genuine chain when
it is not.

e A false negative: the protocol refuses to accept the genuine chain as
genuine because the attacker manages to limit the number of signa-
tures for some run to be less than L.

How big must L be to avoid both of these? In analysing this we assume
that a good node always provides a hook which is adopted into the chain.
This implies that r is sufficiently large together with the incentives for those
doing the adoption.

Suppose L was strictly greater than G the minimum number of good
miners we can conceive in any s consecutive blocks. Then if no bad miner
ever provides a signature but otherwise behaves in exemplary fashion (in
particular never introducing a fork), it is clearly possible that there might
be false negatives.

Next, suppose that L was less than or equal to s — G the maximum num-
ber of bad miners in in any s. Again suppose that no bad miner ever provides
a signature, and that in the evolution of the blockchain, the s blocks up to
and including B,, have at least L bad miners. The attackers can then con-
spire to create a successful fork by introducing their chosen By, ,,..., B}
and have the bad miners duly sign the blocks they are “meant” to amongst
this sequence; including these signatures in later Bj,.

From the two paragraphs above we can conclude that to be free of these
two attacks we need L > s — G and L < G. We can only find L satisfying
both these inequalities if G > s/2, which is hardly surprising.

There are important points that need to made about the potential game
that bad miners might play against the blockchain. Some are helpful to the
attackers and some to those trying to keep it secure.

A On the assumptions that bad miners know each other and collaborate,
they have luxury of knowing how many of them have seen selected for

21

a given run of s blocks before any of them have to commit themselves
by not providing a signature to form a hook. Thus they know they
have the numbers to attack the protocol before they arouse suspicions,
lose fees or deposits for failing to supply signatures.

B It is important to remember that in creating a fork, we can assume
that all blocks beyond the fork are built by bad miners, and on the
assumption that these can lie about time, at any time. So there is
no inspection or monitoring of these blocks by good nodes until the
branch is presented them to try to gain acceptance.

This creates a challenge and quandary for attackers, whom we must
assume are well aware of the progress of the official chain as well as
trying to gain opportunities to attack. It is this: how do they behave
when contributing to the official chain, other than presumably trying
to get as many mining rights as they can. Do they behave like good
nodes: this has the advantage of getting them their expected income
from mining in the official chain and not drawing attention to their
existence? Or do they withhold some of the hooks they are expected
to provide? The argument for doing the latter is that if they do not, it
will be easy for good nodes to suspect subversion and potential forking
whenever they see missing hooks.

C In a blockchain with a technology such as KYC that can reveal the
identities of participants who fail to follow protocol, which can exact
financial penalties on non-performers, or both, it will be unattractive
for anyone to carry out an attack which may be discovered, is blame-
able on them, and which might fail. This would seem to push bad
miners in the direction of not showing their hands in the official chain.
In other words it suggests they should supply hooks when required to
do so in the official chain.

Clearly no improvement to the protocol is required if we can choose
s large enough that the consequent L (which is assessed via probability
calculations based on the assumed proportion of bad miners) is greater than
s/2. Of course choosing s large increases the attention span required of
miners and means that the members have to wait longer for the security
that hooks bring to the blockchain. Interestingly it does not require more
signatures: still one per mined block.

22

8 Prevention or cure?

Observations A and B above make it hard to prevent an attack on any region
of the blockchain where sufficient bad miners are chosen. Even if these were
picked in some stochastic way rather than the very predictable schedule we
have chosen, there is nothing to stop an intruder noticing post hoc that he
and his allies have got lucky.

Thus it seems hard to prevent an attack other than by a combination of
the following

e Choosing the parameter L so that the likelihood of the attacker ever
being able to conduct an attack (corresponding to a false positive) is
infinitesimal.

e Ensuring that good nodes essentially always contribute their hooks.

e If this leaves a residual chance of a false negative, ensure that this
is tolerable, most likely have additional and perhaps more expensive,
possibly heads-up tests that can be used in such circumstances to
distinguish between false negatives and attacks.

e An obvious heads-up defence in this case is a direct analogue of the
PoW protocol: pick the block that has the most complete record of
hooks, which possibly means the one that maximises the minimum
number of hooked nodes in any s.

Provided these guidelines are followed, the only result of an attack is
disruption and/or extra cost to the maintenance of the blockchain, rather
than a direct fraud. Such an attack will also cost the attacker in (a) mining
fees and (b) reputation once the chain has recovered. In pure game-theoretic
terms, one should aim to set parameters such that it costs the attacker more
to mount the attack than it costs the good nodes to recover from it.

We must therefore ask what a node can do to reassure themselves or
otherwise about a chain when it is not sure of its correctness. It will have
a fairly small range of blocks where it fears a fork may have occurred. This
means that it can compare the constitution of the chain before and after
this point. If this is the official chain then there is unlikely to be a great
difference before and after. If it is a fake then all the blocks after the fork
will be constructed by bad miners, who obviously will want to make it look
as genuine as possible.

The possibilities for making such a discrimination include

23

e Where mining is public, a discontinuity in the population of miners.

e If we make each transition back an immutable recent block via signa-
ture of its hash, a discontinuity in the population of transactors as the
attacker will be unable to copy transactions successfully.

e Having a bulletin board where suspicious blocks are posted inviting
participants to post evidence including double signings.

e Performing a heads-up search for alternative histories with better
records as discussed above.

In general we might well take missing hooks above a very conservative
threshold as an invitation to do a heads up check to search for alternative
histories of the blockchain. If one is found, a search for blocks that sign
more than one hook may be extremely informative about who is not trust-
worthy. The knowledge that this happens will also make it more difficult for
bad nodes to choose a sensible strategy: by not providing hooks during the
development of the official chain, bad nodes will draw attention to them-
selves and lose incentives. But by providing these hooks, any attempt to
create a believable fork will involve them in double signing, which also draws
attention (in response to heads-up search) and presumably major penalties.

8.1 Using transactions for assurance

If C' is an attacker trying to create a fork, he has to build a block for the fork,
and subsequent blocks to follow it. We already noted that if the nature of
the new blocks was significantly different from the ones immediately before
the fork, this will give anyone testing the chain reasons for suspicion. A
natural tactic for C' to use is to copy transactions from official chain blocks
at the same level as the rival one he is creating, so that the fake blocks
are not grossly different from what the tester is expecting to see. Such a
transaction may or may not refer to things that have happened earlier in
the chain, such as previous transactions. If so C' will need to make sure this
still provides a consistent picture.

We can make this essentially impossible by requiring that each transac-
tion, which as a whole must be signed by the node that proposes it, incorpo-
rates the hash of the most recent block at the point it is proposed. It is then
made a consistency condition of the blockchain that the block-hash in each
transaction in block B is either of the block that B links to or a predecessor
of that.

24

Anyone checking the series of blocks leading to a given proposed B will
then test the compliance of the series to the above rule, either in general or
when there is any doubt arising from missing hooks.

The concept of including block hashes in transactions is also useful for
ensuring the intention or regulation of a given transaction is not circum-
vented. The current state — represented by the most recent block — may
well be essential in the decision process to execute a given transaction or
ensure it is legal. After all the fact that the transaction was carried out may
well have been conditional on the state of the blockchain, as in all likelihood
is the fact that it satisfies regulations. A transaction that satisfies a regula-
tion in one state established by one block may well not satisfy it in the state
established by another.

If A and B operate a joint bank account, they may agree to keep the
balance at least £500, and the bank may well not allow them to have a
negative balance. If they both see that the balance is £1600, each of them
might want to buy (different) things for £1000, seeing this is within their
own limits and the rules. If they both launch their own transactions, they
are both legal in the current state. However if a block with one of them
is added, the other is not, even though it may have previously have been.
This simply illustrates that for both personal and global rules, a check for
validity is unlikely to be accurate unless the label that asserts it includes
a commitment to the state where it was checked. This just emphasises
the similarity between checking general rules and the no-double-spending
property that is so associated with blockchains.

From a security point of view, this incorporation of prior blocks in trans-
actions prevents a strategy for disguising attacks whose effectiveness will
depend on circumstances. Since this idea depends on the regular signature
mechanisms of the users, contingent on the availability of their own iden-
tity records and potentially weak in the long term, neither does it have the
structural advantages of hooks. So from that standpoint we see it as more
of a back up to hooks rather than assurance against forking in its own right.

9 Conclusions

In this paper we have showed how an evolving blockchain can develop hooks,
what are in effect signatures by earlier blocks of later ones. This is self
contained because all the signature material is contained in the blockchain
itself. These signatures should be as strong and permanent as the core hash
links. We believe that these hooks are a hugely powerful tool in ensuring the

25

integrity of a blockchain, and especially a public one where such questions
are normally more more troubling

We have relied on the successful miners providing this assurance because
we assume they have been fairly chosen and will on the whole behave well.
However thanks to the inbuilt hash links we can have each miner back a run
of s consecutive blocks back to itself, giving considerable redundancy in our
protocol to cope with the possible presence of some bad nodes amongst the
participants.

The protection of a link in the blockchain that these hooks provide grows
until that link is roughly speaking the standard hooks length back from both
the head of the chain and the head of the proposed forking branch. We have
seen how to cover cases that do not satisfy this.

Our principal contribution is the construction of hooks and the analysis
of the situation (including assumptions) on which they provide an exact
decision method for whether a given block B is on a fork or not.

In an implementation we will have to decide how conservative to be in
allowing for potential attacker action. By and large we expect to ensure that
it is not worth it for attackers do do anything other than tow the line, and
in practice impossible for them to successfully subvert or disrupt it, given if
needed the countermeasures in place to attacks.

Heads up defence will not be necessary unless a node is presented with
a block with a marginal record of hooks. In that case it should be possible
to construct effective tests and penalise mis-behaving agents since they will
have breached the hooking protocol.

In general terms we invite others to create other ways to use hooks to
defend blockchains and to develop strategies to encourage good behaviours
and penalise bad in chains that use them.

26

