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Abstract. Smart contracts are the building blocks of the “code is law”
paradigm: the smart contract’s code indisputably describes how its assets
are to be managed - once it is created, its code is typically immutable.
Faulty smart contracts present the most significant evidence against the
practicality of this paradigm; they are well-documented and resulted in
assets worth vast sums of money being compromised. To address this
issue, the Ethereum community proposed (i) tools and processes to au-
dit/analyse smart contracts, and (ii) design patterns implementing a
mechanism to make contract code mutable. Individually, (i) and (ii) only
partially address the challenges raised by the “code is law” paradigm. In
this paper, we combine elements from (i) and (ii) to create a systematic
framework that moves away from “code is law” and gives rise to a new
“specification is law” paradigm. It allows contracts to be created and up-
graded but only if they meet a corresponding formal specification. The
framework is centered around a trusted deployer : an off-chain service
that formally verifies and enforces this notion of conformance. We have
prototyped this framework, and investigated its applicability to contracts
implementing three widely used Ethereum standards: the ERC20 Token
Standard, ERC3156 Flash Loans and ERC1155 Multi Token Standard,
with promising results.

Keywords: Formal Verification · Smart Contracts · Ethereum · Solidity
· Safe Deployment · Safe Upgrade

1 Introduction

A smart contract is a stateful reactive program that is stored in and processed
by a trusted platform, typically a blockchain, which securely executes such a
program and safely stores its persistent state. Smart contracts were created to
provide an unambiguous, automated, and secure way to manage digital assets.
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They are the building blocks of the “code is law” paradigm, indisputably de-
scribing how their assets are to be managed. To implement this paradigm, many
smart contract platforms - including Ethereum, the platform we focus on - dis-
allow the code of a contract to be changed once deployed, effectively enforcing
a notion of code/implementation immutability.

Implementation immutability, however, has two main drawbacks. Firstly, con-
tracts cannot be patched if the implementation is found to be incorrect after
being deployed. There are many examples of real-world contract instances with
flaws that have been exploited with astonishing sums of cryptocurrencies being
taken over [30,7]. The ever-increasing valuation of these assets presents a signifi-
cant long-standing incentive to perpetrators of such attacks. Secondly, contracts
cannot be optimised. The execution of a contract function has an explicit cost to
be paid by the caller that is calculated based on the contract’s implementation.
Platform participants would, then, benefit from contracts being updated to a
functionally-equivalent but more cost-effective implementation, which is disal-
lowed by this sort of code immutability.

To overcome this limitation, the Ethereum community has adopted the proxy
pattern [31] as a mechanism by which one can mimic contract upgrades. The
simple application of this pattern, however, presents a number of potential issues.
Firstly, the use of this mechanism allows for the patching of smart contracts but
it does not address the fundamental underlying problem of correctness. Once an
issue is detected, it can be patched but (i) it may be too late, and (ii) what if
the patch is faulty too? Secondly, it typically gives an, arguably, unreasonable
amount of power to the maintainers of this contract. Therefore, no guarantees
are enforced by this updating process; the contract implementations can change
rather arbitrarily as long as the right participants have approved the change. In
such a context, the “code is law” paradigm is in fact nonexistent.

To address these issues, we propose a systematic deployment framework that
requires contracts to be formally verified before they are created and upgraded;
we target the Ethereum platform and smart contracts written in Solidity. We pro-
pose a verification framework based on the design-by-contract methodology [25].
The specification format that we propose is similar to what the community has
used, albeit in an informal way, to specify the behaviour of common Ethereum
contracts [35]. Our framework also relies on our own version of the proxy pat-
tern to carry out updates but in a sophisticated and safe way. We rely on a
trusted deployer, which is an off-chain service, to vet contract creations and up-
dates. These operations are only allowed if the given implementation meets the
expected specification - the contract specification is set at the time of contract
creation and remains unchanged during its lifetime. As an off-chain service, our
framework can be readily and efficiently integrated into existing blockchain plat-
forms. Participants can also check whether a contract has been deployed via our
framework so that they can be certain the contract they want to execute has the
expected behaviour.

Our framework promotes a paradigm shift where the specification is im-
mutable instead of the implementation/code. Thus, it moves away from “code is
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law” and proposes the “specification is law” paradigm - enforced by formal veri-
fication. This new paradigm addresses all the concerns that we have highlighted:
arbitrary code updates are forbidden as only conforming implementations are al-
lowed, and buggy contracts are prevented from being deployed as they are vetted
by a formal verifier. Thus, contracts can be optimised and changed to meet evolv-
ing business needs and yet contract stakeholders can rely on the guarantee that
the implementations always conform to their corresponding specifications. As
specifications are more stable and a necessary element for assessing the correct-
ness of a contract, we believe that a framework that focuses on this key artifact
and makes it immutable improves on the current “code is law” paradigm.

We have created a prototype of our framework, and conducted a case study
that investigates its applicability to real-world smart contracts implementing
the widely used ERC20, ERC3156 and ERC1155 Ethereum token standards.
We analysed specifically how the sort of formal verification that we use fares in
handling practical contracts and obtained promising results.

In this paper, we assume the deployer is a trusted third party and focus on the
functional aspect of our framework. We are currently working on an implemen-
tation of the trusted deployer that relies on a Trusted Execution Environment
(TEE) [24], specifically the AMD SEV implementation [29]. Despite being an off-
chain service, the use of a TEE to implement our deployer should give it a level of
execution integrity/trustworthiness, enforced by the trusted hardware, compara-
ble to that achieved by on-chain mechanisms relying on blockchains’ consensus,
with less computational overhead. However, on-chain mechanisms would enjoy
better availability guarantees. We further discuss these trade-offs in Section 5.
Outline. Section 2 introduces the relevant background material. Section 3 intro-
duces our framework, and Section 4 the evaluation that we conducted. Section 5
discusses related work, whereas Section 6 presents our concluding remarks.

2 Background

2.1 Solidity

A smart contract is a program running on a trusted platform, usually a block-
chain, that manages the digital assets it owns. Solidity is arguably the most used
language for writing smart contracts as it was designed for the development of
contracts targeting the popular Ethereum blockchain platform [1]. A contract in
Solidity is a concept very similar to that of a class in object-oriented languages,
and a contract instance a sort of long-lived persistent object. We introduce the
main elements of Solidity using the ToyWallet contract in Figure 1. It imple-
ments a very basic “wallet” contract that participants and other contracts can
rely upon to store their Ether (Ethereum’s cryptocurrency). The member vari-
ables of a contract define the persistent state of the contract. This example
contract has a single member variable accs, a mapping from addresses to 256-
bit unsigned integers, which keeps track of the balance of Ether each “client”
of the contract has in the ToyWallet; the integer accs[addr] gives the current
balance for address addr, and an address is represented by a 160-bit number.
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Public functions describe the operations that participants and other con-
tracts can execute on the contract. The contract in Figure 1 has public functions
deposit and withdraw that can be used to transfer Ether into and out of the
ToyWallet contract, respectively. In Solidity, functions have the implicit argu-
ment msg.sender designating the caller’s address, and payable functions have
the msg.value which depict how much Wei - the most basic (sub)unit of Ether
- is being transferred, from caller to callee, with that function invocation; such
a transfer is carried out implicitly by Ethereum. For instance, when deposit is
called on an instance of ToyWallet, the caller can decide on some amount amt
of Wei to be sent with the invocation. By the time the deposit body is about
to execute, Ethereum will already have carried out the transfer from the balance
associated to the caller’s address to that of the ToyWallet instance - and amt

can be accessed via msg.value. Note that, as mentioned, this balance is part
of the blockchain’s state rather than an explicit variable declared by the con-
tract’s code. One can programmatically access this implicit balance variable for
address addr with the command addr.balance. Solidity’s construct require

(condition) aborts and reverts the execution of the function in question if
condition does not hold - even in the case of implicit Ether transfers. The call
addr.send(amount) sends amount Wei from the currently executing instance to
address addr; it returns true if the transfer was successful, and false otherwise.
For instance, the first require statement in the function withdraw requires the
caller to have the funds they want to withdraw, whereas the second requires
the msg.sender.send(value) statement to succeed, i.e. the value must have
been correctly withdrawn from ToyWallet to msg.sender. The final statement
in this function updates the account balance of the caller (i.e. msg.sender) in
ToyWallet to reflect the withdrawal.

We use the transaction create-contract as a means to create an instance of
a Solidity smart contract in Ethereum. In reality, Ethereum only accepts con-
tracts in the EVM bytecode low-level language - Solidity contracts need to be
compiled into that. The processing of a transaction create-contract(c, args) cre-
ates an instance of contract c and executes its constructor with arguments args.
Solidity contracts without a constructor (as our example in Figure 1) are given
an implicit one. A create-contract call returns the address at which the contract
instance was created. We omit the args when they are not relevant for a call.
We use σ to denote the state of the blockchain where σ[ad].balance gives the
balance for address ad, and σ[ad].storage.mem the value for member variable
mem of the contract instance deployed at ad for this state. For instance, let ctw
be the code in Figure 1, and addrtw the address returned by the processing of
create-contract(ctw). For the blockchain state σ′ immediately after this process-
ing, we have that: for any address addr, σ′[addrtw].storage.accs[addr] = 0 and
its balance is zero, i.e., σ′[addrtw].balance = 0. We introduce and use this intu-
itive notation to present and discuss state changes as it can concisely and clearly
capture them. There are many works that formalise such concepts [18,36,6].

A transaction call-contract can be used to invoke contract functions; pro-
cessing call-contract(addr, func sig, args) executes the function with signature
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Fig. 1: ToyWallet contract example.

func sig at address addr with input arguments args. When a contract is created,
the code associated with its non-constructor public functions is made available to
be called by such transactions. The constructor function is only run (and avail-
able) at creation time. For instance, let addrtw be a fresh ToyWallet instance
and ToyWallet.deposit give the signature of the corresponding function in
Figure 1, processing the transaction call-contract(addrtw, ToyWallet.deposit,
args) where args = {msg.sender = addrsnd,msg.value = 10} would cause
the state of this instance to be updated to σ′′ where we have that σ′′[addrtw].
storage.accs[addrsnd] = 10 and σ′′[addrtw].balance = 10. So, the above transac-
tion has been issued by address addrsnd which has transferred 10 Wei to addrtw.

2.2 Formal verification with solc-verify

The modular verifier solc-verify [17,16] was created to help developers to formally
check that their Solidity smart contracts behave as expected. Input contracts are
manually annotated with contract invariants and their functions with pre- and
postconditions. An annotated Solidity contract is then translated into a Boogie
program which is verified by the Boogie verifier [9,20]. Its modular nature means
that solc-verify verifies functions locally/independently, and function calls are
abstracted by the corresponding function’s specification, rather than their im-
plementation being precisely analysed/executed. These specification constructs
have their typical meaning. An invariant is valid if it is established by the con-
structor and maintained by the contract’s public functions, and a function meets
its specification if and only if from a state satisfying its preconditions, any state
successfully terminating respects its postconditions. So the notion is that of
partial correctness. Note that an aborted and reverted execution, such as one
triggered by a failing require command, does not successfully terminate. We
use Figure 2 illustrates a solc-verify specification for an alternative version of the
ToyWallet’s withdraw function. The postconditions specify that the balance of
the instance and the wallet balance associated with the caller must decrease by
the withdrawn amount and no other wallet balance must be affected by the call.

This alternative implementation uses msg.sender.call.value(val)("")

instead of msg.sender.send(val). While the latter only allows for the trans-
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Fig. 2: ToyWallet alternate buggy withdraw implementation with specification.

fer of val Wei from the instance to address msg.sender, the former delegates
control to msg.sender in addition to the transfer of value.5 If msg.sender is
a smart contract instance that calls withdraw again during this control dele-
gation, it can withdraw all the funds in this alternative ToyWallet instance -
even the funds that were not deposited by it. This reentrancy bug is detected
by solc-verify when it analyses this alternative version of the contract. A similar
bug was exploited in what is known as the DAO attack/hack to take over US$53
million worth of Ether [30,7].

3 Safe Ethereum Smart Contracts Deployment

We propose a framework for the safe creation and upgrade of smart contracts
based around a trusted deployer. This entity is trusted to only create or update
contracts that have been verified to meet their corresponding specifications. A
smart contract development process built around it prevents developers from
deploying contracts that have not been implemented as intended. Thus, stake-
holders can be sure that contract instances deployed by this entity, even if their
code is upgraded, comply with the intended specification.

Our trusted deployer targets the Ethereum platform, and we implement it as
an off-chain service. Generally speaking, a trusted deployer could be implemented
as a smart contract in a blockchain platform, as part of its consensus rules, or
as an off-chain service. In Ethereum, implementing it as a smart contract is not
practically feasible as a verification infrastructure on top of the EVM [1] would
need to be created. Furthermore, blocks have an upper limit on the computing
power they can use to process their transactions, and even relatively simple
computing tasks can exceed this upper limit [37]. As verification is a notoriously
complex computing task, it should exceed this upper limit even for reasonably
small systems. Neither can we change the consensus rules for Ethereum.

We present the architecture of the trusted deployer infrastructure in Figure 3.
The trusted deployer relies on an internal verifier that implements the functions

5 In fact, the function send also delegates control to msg.sender but it does in such
a restricted way that it cannot perform any side-effect computation. So, for the
purpose of this paper and to simplify our exposition, we ignore this delegation.
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Fig. 3: Trusted deployer architecture.

verify-creation⊑ and verify-upgrade⊑, and an upgrader that implements functions
create-contract and upgrade-contract ; we detail what these functions do in the
following. The deployer’s create-contract (upgrade-contract) checks that an im-
plementation meets its specification by calling verify-creation⊑ (verify-upgrade⊑)
before relaying this call to the upgrader’s create-contract (upgrade-contract)
which effectively creates (upgrades) the contract in the Ethereum platform. The
get-spec function can be used to test whether a contract instance has been de-
ployed by the trusted deployer and which specification it satisfies.

The verifier is used to establish whether an implementation meets a spec-
ification. A verification framework is given by a triple (S, C,⊑) where S is a
language of smart contract specifications, C is a language of implementations,
and ⊑ ∈ (S × C) is a satisfiability relation between smart contracts’ specifi-
cations and implementations. In this paper, C is the set of Solidity contracts
and S a particular form of Solidity contracts, possibly annotated with contract
invariants, that include function signatures annotated with postconditions. The
functions verify-creation⊑ and verify-upgrade⊑ both take a specification s ∈ S
and a contract implementation c ∈ C and test whether c meets s - they work
in slightly different ways as we explain later. When an implementation does
not meet a specification, verifiers typically return an error report that points
out which parts of the specification do not hold and maybe even witnesses/-
counterexamples describing system behaviours illustrating such violations; they
provide valuable information to help developers correct their implementations.

The upgrader is used to create and manage upgradable smart contracts -
Ethereum does not have built-in support for contract upgrades. Function create-
contract creates an upgradable instance of contract c - it returns the Ethereum
address where the instance was created - whereas upgrade-contract allows for
the contract’s behaviour to be upgraded. The specification used for a successful
contract creation will be stored and used as the intended specification for future
upgrades. Only the creator of a trusted contract can update its implementation.

Note that once a contract is created via our trusted deployer, the instance’s
specification is fixed, and not only its initial implementation but all upgrades
are guaranteed to satisfy this specification. Therefore, participants in the ecosys-
tem interacting with this contract instance can be certain that its behaviour is
as intended by its developer during the instance’s entire lifetime, even if the
implementation is upgraded as the contract evolves.
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In this paper, we focus on contract upgrades that preserve the signature of
public functions. Also, we assume contract specifications fix the data structures
used in the contract implementation. However, we plan to relax these restrictions
in future versions of the framework, allowing the data structures in the contract
implementation to be a data refinement of those used in the specification; we
also plan to allow the signature of the implementation to extend that of the
specification, provided some notion of behaviour preservation is obeyed when
the extended interface is projected into the original one.

3.1 Verifier

We propose design-by-contract [25] as a methodology to specify the behaviour
of smart contracts. In this traditional specification paradigm, conceived for
object-oriented languages, a developer can specify invariants for a class and
pre-/postconditions for its methods. Invariants must be established by the con-
structor and guaranteed by the public methods, whereas postconditions are en-
sured by the code in the method’s body provided that the preconditions are
guaranteed by the caller code and the method terminates. Currently, we focus
on partial correctness, which is aligned with our goal to ensure safety properties,
and the fact that smart contracts typically have explicitly bound executions6.
We propose a specification format that defines what the member variables and
signatures of member functions should be. Additionally, the function signatures
can be annotated with postconditions, and the specification with invariants;
these annotations capture the expected behaviour of the contract. In ordinary
programs, a function is called in specific call sites fixed in the program’s code.
Preconditions can, then, be enforced and checked in these call sites. In the con-
text of public functions of smart contracts, however, any well-formed transaction
can be issued to invoke such a function. Hence, we move away from preconditions
in our specification, requiring, thus, postconditions to be met whenever public
functions successfully terminate.

Figure 4 illustrates a specification for the ToyWallet contract. Invariants
are declared in a comment block preceding the contract declaration, and func-
tion postconditions are declared in comment blocks preceding their signatures.
Our specification language reuses constructs from Solidity and the solc-verify
specification language, which in turn borrows elements from the Boogie lan-
guage [9,20]. Member variables and function signature declarations are as pre-
scribed by Solidity, whereas the conditions on invariants, and postconditions are
side-effect-free Solidity expressions extended with quantifiers and the expression
__verifier_old_x(v) that can only be used in a postcondition, and it denotes
the value of v in the function’s execution pre-state.

We choose to use Solidity as opposed to EVM bytecode as it gives a cleaner
semantic basis for the analysis of smart contracts [6] and it also provides a high-
level error message when the specification is not met. The satisfiability relation
⊑ that we propose is as follows.

6 The Ethereum concept of gas, i.e. execution resources, is purposely abstracted
away/disregarded in our exposition.
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Fig. 4: ToyWallet specification.

Definition 1. The relation s ⊑ c holds iff:

– Syntactic obligation: a member variable is declared in s if and only if it is
declared in c with the same type, and they must be declared in the same order.
A public function signature is declared in s if and only if it is declared and
implemented in c.

– Semantic obligation: invariants declared in s must be respected by c, and the
implementation of functions in c must respect their corresponding postcon-
ditions described in s.

The purpose of this paper is not to provide a formal semantics to Solidity or
to formalise the execution model implemented by the Ethereum platform. Other
works propose formalisations for Solidity and Ethereum [17,5,36]. Our focus is
on using the modular verifier solc-verify to discharge the semantic obligations
imposed by our satisfaction definition.

The verify-creation⊑ function works as follows. Firstly, the syntactic obliga-
tion imposed by Definition 1 is checked by a syntactic comparison between s and
c. If it holds, we rely on solc-verify to check whether the semantic obligation is
fulfilled. We use what we call a merged contract as the input to solc-verify - it
is obtained by annotating c with the corresponding invariants and postcondi-
tions in s. If solc-verify is able to discharge all the proof obligations associated
to this merged contract, the semantic obligations are considered fulfilled, and
verify-creation⊑ succeeds.

Function verify-upgrade⊑ is implemented in a very similar way but it re-
lies on a slightly different satisfiability relation and merged contract. While
verify-creation⊑ checks that the obligations of the constructor are met by its
implementation, verify-upgrade⊑ assumes they do, since the constructor is only
executed - and, therefore, its implementation checked for satisfiability - at cre-
ation time. The upgrade process only checks conformance for the implementation
of the (non-constructor) public functions.
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3.2 Upgrader

Ethereum does not provide a built-in mechanism for upgrading smart contracts.
However, one can simulate this functionality using the proxy pattern [31], which
splits the contract across two instances: the proxy instance holds the persistent
state and the upgrade logic, and rely on the code in an implementation instance
for its business logic. The proxy instance is the de-facto instance that is the
target of calls willing to execute the upgradable contract. It stores the address
of the implementation instance it relies upon, and the behaviour of the proxy’s
public functions can be upgraded by changing this address. Our upgrader relies
on our own version of this pattern to deploy upgradable contracts.

Given a contract c that meets its specification according to Definition 1, the
upgrader creates the Solidity contract proxy(c) as follows. It has the same mem-
ber variable declarations, in the same order, as c - having the same order is an
implementation detail that is necessary to implement the sort of delegation we
use as it enforces proxy and implementation instances to share the same mem-
ory layout. In addition to those, it has a new address member variable called
implementation - it stores the address of the implementation instance. The
constructor of proxy(c) extends the constructor of c with an initial setting up of
the variable implementation.7 This proxy contract also has a public function
upgrade that can be used to change the address of the implementation instance.
The trusted deployer is identified by a trusted Ethereum address addrtd. This
address is used to ensure calls to upgrade can only be issued by the trusted
deployer. In the process of creating and upgrading contracts the trusted de-
ployer acts as an external participant of the Ethereum platform. We assume that
the contract implementations and specifications do not have member variables
named implementation, or functions named upgrade to avoid name clashes.

The proxy instance relies on the low-level delegatecall Solidity command
to dynamically execute the function implementations defined in the contract
instance at implementation. When the contract instance at address proxy ex-
ecutes implementation.delegatecall(sig, args), it executes the code asso-
ciated with the function with signature sig stored in the instance at address
implementation but applied to the proxy instance - modifying its state - instead
of implementation. For each (non-constructor) public function in c with signa-
ture sig, proxy(c) has a corresponding function declaration whose implementa-
tion relies on implementation.delegatecall(sig, args). This command was
proposed as a means to implement and deploy contracts that act as a sort of
dynamic library. Such a contract is deployed with the sole purpose of other
contracts borrowing and using their code.

7 Instead of using the proxy pattern initialize function to initialise the state of the
proxy instance, we place the code that carries out the desired initialisation directly
into the proxy’s constructor. Our approach benefits from the inherent behaviour
of constructors - which only execute once and at creation time - instead of hav-
ing to implement this behaviour for the non-constructor function initialize. Our
Trusted Deployer, available at https://github.com/formalblocks/safeevolution,
automatically generates the code for such a proxy.

https://github.com/formalblocks/safeevolution
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The upgrader function create-contract(c) behaves as follows. Firstly, it is-
sues transaction create-contract(c, args) to the Ethereum platform to create the
initial implementation instance at address addrimpl. Secondly, it issues trans-
action create-contract(proxy(c), args), such that implementation would be set
to addrimpl, to create the proxy instance at address addrpx. Note that both of
these transactions are issued by and using the trusted deployer’s address addrtd.
The upgrader function upgrade-contract(c) behaves similarly, but the second step
issues transaction call-contract(addrpx,upgrade, args), triggering the execution
of function upgrade in the proxy instance and changing its implementation

address to the new implementation instance.

4 Case studies: ERC20, ERC1155, and ERC3156

To validate our approach, we have carried out three systematic case studies
of the ERC20 Token Standard, the ERC1155 Multi Token Standard, and the
ERC3156 Flash Loans. For the ERC20, we examined 8 repositories and out of
32 commits analysed, our framework identified 8 unsafe commits, in the sense
that they did not conform to the specification; for the ERC1155, we examined
4 repositories and out of 18 commits analysed, 5 were identified as unsafe; and
for the ERC3156, we examined 5 repositories and out of 18 commits analysed,
7 were identified as unsafe. We have prototyped the entire framework in the
form of our Trusted Deployer.8 We have applied it to the commit history of the
repository 0xMonorepo, and our tool was able to identify and prevent unsafe
evolutions while carrying out safe ones. The design and promising findings of
these case studies and commit history analyses are presented in full detail in the
extended version of this paper [4]. In the remainder of this section, as our space
is limited, we only present here a brief account of the ERC20 case study.

Our summary of the ERC20 case study presented here has focused specifically
on the verification of the semantic obligation that we enforce. This task is the
most important and computationally-demanding element of our methodology.
So, in this case study, we try to establish whether: (a) can we use our notation
to capture the ERC20 specification formally, (b) (if (a) holds) can solc-verify
check that real-world ERC20 contracts conform to its formal specification, and
(c) (if (b) holds) how long does solc-verify take to carry out such verifications.s

We were able to capture the ERC20 specification using our notation, an ex-
tract of which is presented in Figure 5, so we have a positive answer to (a). To
test (b) and (c), we relied on checking, using solc-verify, merged contracts in-
volving our specification and real-world contracts. We selected contract samples
from public github repositories that presented a reasonably complex and inter-
esting commit history. The samples cover aspects of evolution that are related to
improving the readability and maintenance of the code, but also optimisations
where, for instance, redundant checks executed by a function were removed.

8 The prototype is implemented as a standalone tool available at https://github.

com/formalblocks/safeevolution. We do not provide a service running inside a
Trusted Execution Environment yet but such a service will be provided in the future.

https://github.com/formalblocks/safeevolution
https://github.com/formalblocks/safeevolution
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ERC20

Repository Commit Time Output Repository Commit Time Output

0xMonorepo 548fda 7.78s WOP Uniswap 55ae25 6.89s WOP
DigixDao 5aee64 8.52s NTI Uniswap e382d7 7.08s IOU
DsToken 08412f 8.74s WOP SkinCoin 25db99 1.95s NTI
Klenergy 60263d 2.40s VRE SkinCoin 27c298 1.81s NTI

Table 1: ERC20 Results

Fig. 5: ERC20 reduced specification.

We checked these merged contracts using a Lenovo IdeapadGaming3i with
Windows 10, Intel(R) Core(TM) i7-10750 CPU @ 2.60GHz, 8GB of RAM, with
Docker Engine 20.15.5 and Solidity compiler version 0.5.17. Table 1 shows the
results we obtained.9 Our framework was able to identify errors in the following
categories: Integer Overflow and Underflow (IOU); Nonstandard Token Interface
(NTI), when the contract does not meet the syntactic restriction defined by the
standard; wrong operator (WOP), for instance, when the < operator would
be expected but ≤ is used instead; Verification Error (VRE) denotes that the
verification process cannot be completed or the results were inconclusive. Our
framework also found conformance for 24 commits analysed; we omitted those
for brevity, each of them was verified in under 10s.

The ERC20 standard defines member variables: totalSupply keeps track of
the total number of tokens in circulation, balanceOf maps a wallet (i.e. address)
to the balance it owns, and allowance stores the number of tokens that an ad-
dress has made available to be spent by another one. It defines public functions:
totalSupply, balanceOf and allowance are accessors for the above variables;
transfer and transferFrom can be used to transfer tokens between contracts;
and approve allows a contract to set an “allowance” for a given address.

9 All the instructions, the specifications, the sample contracts, and scripts used in this
evaluation can be found at https://github.com/formalblocks/safeevolution.

https://github.com/formalblocks/safeevolution
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Fig. 6: Buggy ERC20 transferFrom function.

Figure 5 presents a reduced specification - focusing on function transferFrom
for the purpose of this discussion - derived from the informal description in the
standard [35]. In Line 1, we define a contract invariant requiring that the total
number of tokens supplied by this contract is equal to the sum of all tokens
owned by account holders. The transferFrom function has 4 postconditions;
the operation is successful only when the tokens are debited from the source
account and credited in the destination account, according to the specifications
provided in the ERC20 standard. The first two postconditions (lines 9 to 10)
require that the balances are updated as expected, whereas the purpose of the
last two (lines 11 to 12) is to ensure that the tokens available for withdrawal
have been properly updated.

We use the snippet in Figure 6 - extracted from the Uniswap repository, com-
mit 55ae25 - to illustrate the detection of wrong operator errors. When checked
by our framework, the third postcondition for the transferFrom function pre-
sented in the specification in Figure 5 is not satisfied. Note that the allowance
amount is not debited if the amount to be transferred is equal to the maximum
integer supported by Solidity (i.e. uint(-1)). A possible solution would consist
of removing the if branching, allowing the branch code to always execute. We
have also validated cases of safe evolution, namely, where our framework was
able to show that consecutive updates conformed with the specification.

The results of our case study demonstrate that we can verify real-world
contracts implementing a very popular Ethereum token standard efficiently -
positively answering questions (b) and (c). The fact that errors were detected
(and safe evolutions were checked) in real-world contracts attests to the necessity
of our framework and its practical impact. More details about this case study
and of the other two, with our commit history analyses, can be found in [4].

5 Related Work

Despite the glaring need for a safe mechanism to upgrade smart contracts in
platforms, such as Ethereum, where contract implementations are immutable
once deployed [19,32,15], surprisingly, we could only find three close related
approaches [10,8,28] that try to tackle this specific problem. The work in [10]
proposes a methodology based around special contracts that carry a proof that
they meet the expected specification. They propose the addition of a special
instruction to deploy these special proof-carrying contracts, and the adaptation
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of platform miners, which are responsible for checking and reaching a consensus
on the validity of contract executions, to check these proofs. Our framework
and the one presented in that work share the same goal, but our approach
and theirs differ significantly in many aspects. Firstly, while theirs requires a
fundamental change on the rules of the platform, ours can be implemented, as
already prototyped, on top of Ethereum’s current capabilities and rely on tools
that are easier to use, i.e. require less user input, like program verifiers. The
fact that their framework is on-chain makes the use of such verification methods
more difficult as they would slow down consensus, likely to a prohibitive level.

Azzopardi et al. [8] propose the use of runtime verification to ensure that
a contract conforms to its specification. Given a Solidity smart contract C and
an automaton-based specification S, their approach produces an instrumented
contract I that dynamically tracks the behaviour of C with respect to S. I’s
behaviour is functionally equivalent to C when S is respected. If a violation
to S is detected, however, a reparation strategy (i.e. some user-provided code)
is executed instead. This technique can be combined with a proxy to ensure
that a monitor contract keeps track of implementation contracts as they are
upgraded, ensuring their safe evolution. Unlike our approach, there is an in-
herent (on-chain) runtime overhead to dynamically keep track of specification
conformance. An evaluation in that paper demonstrates that, for a popular type
of contract call, it can add a 100% cost overhead. Our off-chain verification at
deployment-time does not incur this sort of overhead. Another difference from
our approach concerns the use of reparation strategies. One example given in the
paper proposes the reverting of a transaction/behaviour that is found to be a
violation. An improper implementation could, then, have most of its executions
reverted. Our approach presents at (pre-)deployment-time the possible violated
conditions, allowing developers to fix the contract before deployment. Their on-
chain verification can be implemented on top of Ethereum’s capabilities.

In [28], the authors propose a mechanism to upgrade contracts in Ethereum
that works at the EVM-bytecode level. Their framework takes vulnerability re-
ports issued by the community as an input, and tries to patch affected deployed
contracts automatically using patch templates. It uses previous contract trans-
actions and, optionally user-provided unit tests, to try to establish whether a
patch preserves the behaviour of the contract. Ultimately, the patching process
may require some manual input. If the deployed contract and the patch disagree
on some test, the user must examine this discrepancy and rule on what should be
done. Note that this manual intervention is always needed for attacked contracts,
as the transaction carrying out the attack - part of the attacked contract’s his-
tory - should be prevented from happening in the new patched contract. While
they simply test patches that are reactively generated based on vulnerability re-
ports, we proactively require the user to provide a specification of the expected
behaviour of a contract and formally verify the evolved contract against such
a formal specification. Their approach requires less human intervention, as a
specification does not need to be provided - only optionally some unit tests -
but it offers no formal guarantees about patches. It could be that a patch passes
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their validation (i.e. testing with the contract history), without addressing the
underlying vulnerability.

Methodologies to carry out pre-deployment patching/repairing of smart con-
tracts have been proposed [33,26,38]. However, they do not propose a way to
update deployed contracts. A number of tools to verify smart contracts at both
EVM and Solidity levels have been proposed [23,22,14,13,34,27,36,17,16,6,2,3].
Our paper proposes a verification-focused development process based around,
supported, and enforced by such tools.

6 Conclusion

We propose a framework for the safe deployment of smart contracts. Not only
does it check that contracts conform to their specification at creation time, but it
also guarantees that subsequent code updates are conforming too. Upgrades can
be performed even if the implementation has been proven to satisfy the specifi-
cation initially. A developer might, for instance, want to optimise the resources
used by the contract. Furthermore, our trusted deployer records information
about the contracts that have been verified, and which specification they con-
form to, so that participants can be certain they are interacting with a contract
with the expected behaviour; contracts can be safely executed. None of these
capabilities are offered by the Ethereum platform by default nor are available in
the literature to the extent provided by the framework proposed in this paper.

We have prototyped our trusted deployer and investigated its applicability
- specially its formal verification component - to contracts implementing three
widely used Ethereum standards: the ERC20 Token Standard, ERC3156 Flash
Loans and ERC1155 Multi Token Standard, with promising results.

Our framework shifts immutability from the implementation of a contract
to its specification, promoting the “code is law” to the “specification is law”
paradigm. We believe that this paradigm shift brings a series of improvements.
Firstly, developers are required to elaborate a (formal) specification, so they can,
early in the development process, identify issues with their design. They can and
should validate their specification; we consider this problem orthogonal to the
framework that we are providing. Secondly, specifications are more abstract and,
as a consequence, tend to be more stable than (the corresponding conforming)
implementations. A contract can be optimised so that both the original and op-
timised versions must satisfy the same reference specification. Thirdly, even new
implementations that involve change of data representation can still be formally
verified against the same specification, by using data refinement techniques.

A limitation of our current approach is the restrictive notion of evolution for
smart contracts: only the implementation of public functions can be upgraded -
the persistent state data structures are fixed. However, we are looking into new
types of evolution where the data structure of the contract’s persistent state can
be changed - as well as the interface of the specification, provided the projected
behaviour with respect to the original interface is preserved, based on notions of
class [21] and process [11] inheritance, and interface evolution such as in [12].
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