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Abstract: We introduce a new way of constructing a random oracle that generates a random number at chosen events
— such as the generation of a new block — in a blockchain. We make fairly standard assumptions about the
distribution of good and bad behaviour of contributing agents and do not require any dependably trustworthy
player, internal or external. We give two variants on this oracle. These cannot be meaningfully biassed by any
feasible coalition of bad agents, whether by their action or inaction.

1 INTRODUCTION

Blockchains frequently need to choose agents or
groups of agents fairly and randomly, for example to
create blocks in consensus mechanisms such as proof
of stake or to verify proposed blocks. The choices
made can affect the integrity of the chain and the al-
location of rewards and penalties. If bad agents could
realistically bias the mechanism behind these choices,
they could potentially get their allies selected for such
roles and thus corrupt the chain because more bad
agents are selected than would be possible under a
fair selection mechanism.

Ideally, we think of a blockchain as being a recur-
sive and stochastic construction of a substantial data
structure under which the integrity of the chain up to
level N guarantees it up to level N + 1. Having an
unbiassable random oracle is a crucial part of this in-
ductive process.

In this paper, we introduce such an oracle that ad-
dresses the inevitable possibility that bad agents may
be selected to participate in oracle generation and that
they potentially can bias the oracle by performing
their late-stage functions or not. We ensure that if an
agent chooses not to release crucial late-stage infor-
mation, it is available through delay mechanisms, and
therefore the oracle value is completely determined
before anyone discovers it.

In the next section, we describe the background to
this work: trust assumptions about the agents partici-
pating in the blockchain, the need for a regular supply
of random numbers, existing approaches to the prob-
lem and the potential ways in which bad agents can
try to influence oracle values. We then describe our

solution, which depends on multi-party computation
in two phases.

Section 3 presents the combinatorial analysis that
underpins the security of our protocol. We then
present two versions of our random oracle, the second
being an extension and improvement on the first. First
in section 4 we introduce the basic idea behind our
random oracle, albeit in a naı̈ve form which can be bi-
assed by bad agents (by selective non-participation).
Then, section 5 describes how delay encryption can
augment the protocol to make our oracle unbiassable.

This paper is an expansion and deeper analysis of
some of the ideas in the unpublished technical report
(Roscoe and Chen, 2019). Related work in the area is
discussed in section 6, and finally we summarise the
main contributions of the paper in section 7.

2 BACKGROUND

Blockchains only make sense in environments where
there is no agent that all users completely trust. They
are thus decentralised systems in which trust emerges
from collective actions and mutual checking. This pa-
per applies to all types of blockchain but principally
to those that choose block creators by a lottery. There
are real advantages to being chosen to create blocks:

1. Financial rewards to block creators in many
blockchains.

2. Ability to choose which transactions are included
can give advantages such as gaining transaction
fees and affecting markets.

3. Blocks will frequently contain material that con-



tribute to the security of the chain, with block
creators having the duty to implement this secu-
rity. While such mechanisms must be tolerant of
some blocks being built by bad agents, they will
typically require sufficient to be good and so the
ability to increase the proportion of blocks built
by the bad might well defeat the security that the
mechanisms seek to establish. So, someone try-
ing to create, for example, a successful fork may
well need to be (along with allies) the creator of a
group of blocks.

We believe that there is an advantage in choosing
relatively recent block creators to perform some secu-
rity related roles in maintaining a blockchain. Such
agents will be motivated to protect the rewards they
are establishing in association with their blocks; they
may well have escrowed a good-behaviour deposit;
and they have already been selected with great care.
They are more likely than general agents to be awake
and well informed about the current state of the chain.

Of course, some of these roles will be in helping
to select the next block creator and validating the re-
sulting block. Overall, we can expect the fundamental
security proof of the blockchain to follow the follow-
ing lines:

1. The proof is up to stochastic certainty: the likeli-
hood of the blockchain not developing correctly is
sufficiently small as to be ignored.

2. For this we need to understand the probability dis-
tribution of bad agents (and so possible bad be-
haviour) in the pool of agents in general and the
block creators in particular.

3. The distribution of each block creator in turn will
— in PoS models — depend on the correctness of
the random oracle that chooses the nominee and
the distributions amongst those operating the or-
acle. If the random oracle can be trusted by all
to be genuinely random, then the likelihood of a
good agent being chosen will exactly reflect the
proportion of good ones amongst those selected
from.

4. Thus, the keystone upon which the analysis de-
pends will be an inductive argument that the block
creators’ goodness is no worse than a well under-
stood distribution — most likely binomial — that
we can analyse.

5. From this, we can draw conclusions about how
large a pre-determined group of the block creators
is required to make any function reliable enough
for stochastic certainty.

3 COMBINATORIAL
THRESHOLDS

Note that where many functions are required to be
stochastically certain, then it is less certain that they
absolutely all will be. So, for it to be certain up to
10−12 that an object requiring 106 individual actions
to work, we would naturally require each of them to
be certain up to 10−18. This type of reasoning only
works where an attacker only gets one or at most a
few tries to break a stochastic barrier, which really
means we must prevent searching from being a bene-
ficial activity.

In this paper, we make the traditional distinc-
tion between good and bad agents, where the former
follow protocol precisely: performing the tasks laid
down accurately and keeping the secrets it is supposed
to. We suppose that successive block creators are
chosen from a population who bid to produce blocks,
with the probability that one is chosen being propor-
tionate to the size of its bid. Of course, that process
has to be managed effectively in such a way that good
block creators are motivated to take part and are there-
fore in a suitable majority amongst the competition.
This choice will be made by the oracle, and succes-
sive choices are independent.

Note that the choice allows repetitions: a fresh
choice is made from (potentially) the same popula-
tion each time. It follows that where the blockchain
ordains that a group of block creators such as those
from block M to block M+ r−1 are delegated a task,
then the same agent might be picked several times;
so while there may be less than r distinct agents in-
volved, in total there will be r votes.

If the chance of each individual block creator
being bad is no more than p, the chance of less
than or equal to s of the r being bad is the sum of
pk(1− p)r−kC(r,k) for k = 0 to s, where C(r,k) is the
usual combinatorial coefficient. It is well known that
this binomial distribution is closely approximated by
the normal one with mean rp and variance rp(1− p).
For the purposes of this paper, we will therefore esti-
mate this sum by the cumulative normal distribution
to s, which in turn can be calculated as a function of
(s−µ)/σ where µ is the mean rp and σ is the standard
deviation

√
rp(1− p).

It follows that for any p and r, and any small ε > 0
representing a tolerance for stochastic certainty, we
can sometimes calculate numbers s such that, for ex-
ample:

1. It is stochastically certain that r samples from
the distribution do not contain as many as s bad
agents, so any s (even when selected from the r
by the enemy) must include at least one good one.



ε value (given as log10ε)
-3 -6 -9 -12 -15 -18

equiv. Mσ 3.0902 4.76 6.002 7.03 7.943 8.759

p

0.3333 77 182 289 396 505 614
0.25 29 68 109 149 190 231
0.2 17 41 65 88 113 137
0.15 10 24 38 52 66 80
0.1 6 13 21 28 36 44
0.05 3 6 9 12 15 18

Table 1: The table shows how many participants are needed
to ensure that less than half are bad (with certainty 1−ε), for
each given likelihood p of any individual agent being bad.
For each ε value, it also gives the equivalent multiple Mσ of
the standard deviation σ, above the mean, that is exceeded
with probability ε (see the appendix for further details).

2. It is stochastically certain that any s chosen from
r must include more than half the good agents
amongst the r.

In other papers we will illustrate how ensuring that
the above limits apply can make blockchain features
secure.

When p < 0.5, we can similarly calculate a mini-
mum r such that with stochastic certainty the number
of bad choices in r is strictly less than r/2, or less
conservatively make the probability of this limit be-
ing breached below larger thresholds.

Table 1 allows us to judge the cost of using one
of our oracle models introduced later. The formulae
used for this calculation are given in the appendix.

In all these calculations we will normally assume
that p is bounded above by 1/3 as this corresponds to
the limit for Byzantine agreement. It will be apparent
that there are considerable benefits if one can justify
using a yet smaller p.

4 A NAÏVE ORACLE PROTOCOL

A random oracle should produce a bit string V , of
specified length, that all users of the blockchain agree
on, on the occurrence of some defined event E that
all can detect — such as a time, a specified elapsed
time since the timestamp on some block, or an ex-
ternal event. No one should have any meaning-
ful information about V before E, but it should be
available to all shortly after E. We are only con-
cerned with oracle values that are generated within
the blockchain. These are necessary if there is no suf-
ficiently trusted external source or collectively trusted
group of sources: an example of the latter would be a
set of random number beacons that are combined to-
gether (e.g. by xor) where all agree that at least one
of them is trustworthy and independent of the others.

This observation depends on the fact that given k
values, at least one of which is both random (i.e. inde-
pendent, uniformly distributed bits) and independent
of the others, one can combine the k (for example by
xor) so that the result is random. It does not matter
that as many as k− 1 may be attempts to subvert the
process. We note that these latter bad values must be
created without knowledge of the good values, oth-
erwise they would not be independent. Therefore,
values contributed by good participants must not be
disclosed until after all values have been committed.
Thus, in both multi-sourced external solutions and in-
ternally generated random number generators, there
is a significant benefit in all contributors irrefutably
committing their shares to ensure that these cannot be
altered once they have seen some others.

The following is a prototype random oracle for a
blockchain, where the agents running the blockchain
are given additional tasks to support it.

1. Well before the event E that will trigger the oracle,
a set of contributors is chosen. These must be dis-
tinct agents and it must be stochastically certain
that at least two of them are good.

2. Each A amongst these contributing agents is ex-
pected to commit a random share SA it has created
by placing hash(A,E,SA) in the chain. It might
do this via a special transaction or A might place
it while creating a block. Thus, when a second
agent is told SA this can be checked against the
commitment. If any A does not commit a value by
some block clearly before E, then its contribution
is excluded.

3. On the occurrence of E, A places SA on its bulletin
board, so all agents can collect all the SA, check
their integrity and form the output value V .

4. Before using V , an agent should create or quote a
certificate for its validity.

This protocol works provided at least two distinct
good agents participate, and all the nominated agents
who commit a value deliver their SA values correctly1.
The reason for requiring two good agents is to ensure
that no one knows the oracle value V in advance: if
there were only one, and it was aware of this, and
knew the behaviour of the bad agents involved, it
might know V in advance. It follows that in selecting
agents to contribute shares, we should avoid choosing
duplicates and yet allow for this in the analysis. We
can ensure that at least two good agents are present

1Enforcing the distinctness of agents is difficult in the
setting of a blockchain since the same agent can assume
different identities while participating in the protocol. We
are exploring different trust models and variations of our
protocol to account for this.



by means of the concepts of stochastic certainty and
stochastic forcing introduced earlier.

What this overlooks is the issue of non-
participation. Under the assumptions about the pres-
ence of bad agents, any group of agents large enough
to ensure that there are one or two good agents will
very likely contain bad agents too. Commitment will
have forced these to choose their shares so they can-
not change them. However, they still have the option
not to reveal them when E arrives. The consequences
of this depend on several factors:

1. How dependable is the communication frame-
work supporting the chain: can agents be rea-
sonably penalised for failing to deliver material?
By and large the more decentralised a system is,
the less we can depend on universally dependable
communication.

2. If not all shares are delivered, is that particular run
aborted, or do the users of the oracle make do with
the shares that they do have?

If it is reasonable to expect all to be in a position
to deliver their obligations consistently rather than be-
ing blocked by communications issues and attacks by
third parties, then possibly the protocol above is suf-
ficient: non-delivery would clearly mark an agent as
bad. Even so, the bad agents would be in a position
to wait until all the good agents have revealed their
own shares — at which point the bad ones in coali-
tion will know the value V before everyone else does
— and can opt for it to be delivered or not. So even in
this case the choices made by the oracle are not unbi-
assable and the designer following this route needs to
assess the associated impact.

If it is not reasonable to make this assumption,
then potentially the enemy can permanently block the
oracle or say yes or no to each and every value.

Exactly the same argument will apply for any ora-
cle that works by getting some nominated participants
to make a contribution to V where (most likely) they
cannot predict each other’s but are committed to what
they will do and can prove they have done so faith-
fully.

To avoid the indefinite blocking of the oracle, one
might define that the oracle be formed from the con-
tributions of the parties who do publish their SA or
do whatever else the protocol calls them to do at the
point where V is assembled. However, this would give
a coalition of m bad agents contributing shares even
more control as they would have 2m choices to pick
from.

5 DELAY AS SELF-OPENING
COMMITMENT

The solution to the problem of selective non-
participation must be to prevent bad agents from
knowing the consequences of participating or not, in
any meaningful way. While it is clear that an agent
participating or not will certainly change the oracle
value V , that action cannot be termed biasing if the
distribution of V from the point of view of all partici-
pants remains the same.

Our objective is therefore to ensure that agents be-
come fully committed to entering a share in the oracle
before anyone can have any idea what V will be. For
this they must put something into the public domain
that will only reveal its value at E, or at least after
agents are already committed, and where this revela-
tion happens by itself, or in such a way that bad agents
cannot prevent it.

For us, the obvious way to achieve this is to em-
ploy delay encryption, originally proposed in (Rivest
et al., 1996). This creates an object delay(t,X) such
that anyone knowing it will eventually be able to
know X , but not until at least t time units from its
creation. There are essentially two types of delay en-
cryption: inexact and exact.

The first of these, inexact delay encryption, de-
pends on anyone trying to use it being required to do
a sequential computation of such length that it will
take them at least t. We term it inexact because a
typical user will inevitably take longer than the mini-
mum time we assume an opponent would take to com-
plete it. Typically, one assumes an approximate ra-
tio K = tuser/topponent of 10–20. This mismatch be-
tween theoretical minimum and likely actual decryp-
tion times can impede progress when the result of
the decryption is needed for subsequent processing.
There are various schemes (Rivest et al., 1996; Cai
et al., 1993) based on iterated squaring, which typi-
cally have fast verification schemes: given X and a
value that purports to be delay(t,X), this can be ver-
ified quickly. There are also schemes based on non-
invertible operations such as (iterated) hashing. We
could use such a scheme as follows: a group of par-
ticipants each delay-encrypts their share of the oracle
and ensures that this is visible in the blockchain be-
fore T/K, where T is the time from creation of the
oracle to when it is meant to open. Only those partic-
ipants whose delayed shares are registered by a block
meeting this specification are used.

The creators of the shares may well still be asked
to release their shares at E, but doing so would not
save a lot of work because the work to decrypt the
delayed shares will have already been done. If there



are two ways in which an SA can become public,
then whichever way actually occurs will have to be
checked against an unambiguous commitment of the
sort discussed earlier.

Depending on whether or not the delay method
is verifiable quickly or not, either a representative
sample of agents decrypt these shares (and publish
them for verification by all), or all do so that by T
they all have the means to create the oracle. Alterna-
tively, they could all know that one of the shares was
not properly created so they can penalise the relevant
party. The latter, we assume, is much preferable to
penalising inaction.

It is clear that this method involves agents in a fair
amount of sequential work for each share they want
to decrypt. Equally, this method ensures that no agent
can bias the oracle when implemented properly, but it
is possible for well-equipped parties to know the or-
acle early in the interval between T/K and T : before
we would ideally like.

We will term this the MPC1 oracle because it in-
volves only one round of multi-party computation,
namely the shares of V . The delay calculations are
individual. In its favour this method does not de-
pend on the trustworthiness of agents other than that
enough are chosen and that two distinct good agents
contribute shares.

The second form of delay encryption we term
exact. In it, time is measured explicitly by agents
who release the material that reveals the encrypted X .
The obvious implementations of this employ a trusted
third party or TTP. Typically, it will have the capabil-
ity of releasing X at any time, but will in fact only
release it at E. It might actually escrow X itself, or it
might know a key that allows people to decrypt X at
any time, and release that key at E — the key would
probably be the dual of a key released earlier as iden-
tified with E.

Assuming the existence of a TTP is generally
thought not to be in the spirit of blockchain. Thus,
it would be good if we could implement exact de-
lay without one, instead taking advantage of the trust
model that underpins the blockchain itself. This is
possible provided that we are confident we can pick a
set of M agents — not necessarily distinct — of whom
less than half are bad, and the good will perform the
role laid out below including keeping the secrets we
require. We define K, the threshold, to be [(M+1)/2],
the smallest integer at least M/2. Note that we are as-
suming that K is larger than the number of bad agents
amongst them, and that also M −K is greater than or
equal to the number of bad agents.

We direct the M agents each to publish a “pub-
lic” key pk( j,E) to be associated with the event E,

by placing it in the blockchain, and to keep the cor-
responding sk( j,E) secret until E, and then reveal it.
We note that, by the assumptions above, less than K
of these keys are revealed before E and at least K of
them are revealed at E.

To create delay(E,X), namely a value that will re-
veal X at E, anyone can therefore form the (M,K)
threshold encryption of X , namely a tuple of M val-
ues such that knowing K −1 of them reveals nothing
about X , but knowing K allows X to be extracted pre-
cisely. The delay encryption then consists of these M
values, with the jth encrypted by pk( j,E). We know
that X will, thus, be revealed to anyone holding this
delay when E occurs, and that it is not revealed to
anyone before this.

This, of course, explains the point of Table 1: it
shows how large M has to be under different assump-
tions.

With this oracle, we would still expect agents to
release their shares SA openly at E. This time, work
to anticipate non-release is not required as it was with
the version using sequential computation. And we
should require a hash commitment in the chain to
guarantee that the value opened is correct whichever
way it opens. As before, the shares that contribute
to the oracle are exactly those that have this hash
commitment and the delay encryption in the chain by
some defined point well before E: certainly we would
expect this set to be immutable by E to deny a possi-
ble choice mechanism.

We will term this the MPC2 oracle, because it re-
lies on two phases on multi-party computation: one
for delay and one for the value V itself.

It makes sense to compare the MPC1 and MPC2
oracles. MPC1 needs fewer trust assumptions than
MPC2, which may be a big advantage when we would
otherwise inhabit the more expensive regions of Ta-
ble 1. Of course, not needing to spread delay en-
cryption amongst many parties itself apparently saves
work and clearly does save a large number of public
key encryptions. On the other hand, the decryptions
in MPC1 have to begin immediately after the delayed
values are posted, and cannot be avoided if the de-
layed values are posted at E as they can with MPC2.
These decryptions are intense though sequential cal-
culations: hopefully each agent will have more cores
than shares to decrypt. MPC2 essentially guarantees
that no enemy will have the value of the oracle before
E, but this is an explicit possibility with MPC1, albeit
not so early as to allow bias. Thus, we have two re-
lated ways of achieving the desired oracle, each with
its own pros and cons.



6 RELATED WORK

Methods for generating and sharing random numbers
have been the subject of much research and develop-
ment; sometimes in their own right and sometimes
as building blocks of a more complex protocol (Ran-
dom.org, 1998; Kelsey et al., 2019; Cachin et al.,
2005; Canetti and Rabin, 1993; Feldman and Mi-
cali, 1989; Gennaro et al., 1999; Micali and Sidney,
1995; Naor et al., 1999; Bhat et al., 2021; Das et al.,
2022). In this section, we focus on distributed meth-
ods that are used to construct a common source of
randomness, a random beacon (Rabin, 1983b). For
a more detailed comparison, a systematic review of
such work is presented in (Raikwar and Gligoroski,
2022).

Some distributed methods rely on a trusted
setup (Cachin et al., 2005; Micali and Sidney, 1995;
Naor et al., 1999). They depend on a trusted dealer
to initialise the parties involved in the protocol. Once
initialised, these interact to generate several random
numbers in such a way that no party (dealer excluded)
can predict in advance the numbers being jointly com-
puted. The need for a trusted setup makes these
approaches unsuitable in the context of blockchains,
given their trust assumptions. It is worth mentioning
that some of these papers propose alternative methods
in which the trusted setup is avoided.

As the need for a trusted setup step is clearly un-
desirable in many domains, work has been carried out
on alternative methods that avoid such a step (Micali
and Sidney, 1995; Canetti and Rabin, 1993; Feldman
and Micali, 1989; Feldman and Micali, 1997), some
of which we discuss next.

Unsurprisingly, many of the works that have pro-
posed distributed methods to generate random num-
bers (Canetti and Rabin, 1993; Feldman and Micali,
1997; Micali and Sidney, 1995; Kiayias et al., 2017;
Gilad et al., 2017) involve solving some version of
the Byzantine Agreement problem (Lamport et al.,
1982; Pease et al., 1980) using randomised proto-
cols (Rabin, 1983a). More recently, with the advent
of blockchains, research into random beacons in their
own right has flourished (Das et al., 2022; Syta et al.,
2017; Bhat et al., 2021; Cascudo and David, 2017;
Nguyen-Van et al., 2019; RANDAO, 2016; Drand,
2017; Ephraim et al., 2020; Schindler et al., 2020;
Schindler et al., 2021).

Some methods rely on verifiable secret sharing
techniques (VSS) (Chor et al., 1985; Feldman, 1987)
in which participants share, verify, and combine lo-
cally created random shares (Syta et al., 2017; Cas-
cudo and David, 2017; Das et al., 2022; Bhat et al.,
2021; Schindler et al., 2020; Kiayias et al., 2017) to

generate a random number. They can tolerate a num-
ber of misbehaving participants: these cannot con-
spire to influence or predict the output of the beacon
before its revelation stage.

RANDAO (RANDAO, 2016; Edgington, 2022)
is an interactive approach in which participants con-
tribute locally-generated random shares, which are
later combined. The first instance of such an ap-
proach was implemented as a smart contract using a
commit-reveal protocol. Later, it was included as part
of the Beacon Chain randomness generation process
— see the Randomness chapter in (Edgington, 2022)
— where each block produced contributes towards the
output of the random beacon. These approaches al-
low the last contributor to the random number to have
some influence over which number is output by the
beacon.

Dfinity (Camenisch et al., 2021; Camenisch et al.,
2022) is a blockchain protocol that uses a thresh-
old signature scheme, based around BLS signa-
tures (Boneh et al., 2001), to create a random beacon.
The beacon is initialised with a well-known agreed-
upon value, and all subsequent values are given by a
unique signature on the previous value emitted which
is jointly computed by the contributors to the beacon.
The initialisation of the threshold scheme proposed,
however, requires either a trusted setup or a secure
key distribution protocol.

Some interactive protocols have used homomor-
phic encryption (amongst other cryptographic primi-
tives) to create a random beacon (Nguyen-Van et al.,
2019; Cherniaeva et al., 2019). In these protocols,
random shares locally generated by the parties in-
volved in the production of the beacons output are
combined using homomorphic encryption. This com-
bination is later decrypted to reveal the beacon’s out-
put.

Algorand (Gilad et al., 2017) is a blockchain pro-
tocol that relies on verifiable random functions (Mi-
cali et al., 1999) to implement a random beacon. This
beacon serves as an input (i.e. seed) to randomly se-
lect participants to perform certain tasks, such as pro-
ducing and validating blocks. Block producers com-
pute the next value of the beacon by running a ver-
ifiable random function on the previously computed
value of the beacon. If the producer fails to propose
a beacon value, the hash of the previous beacon value
concatenated with the current round number is used.

There are proposals for using blockchain data,
as a source of randomness, to create a random bea-
con (Bonneau et al., 2015). The block producers in
such a system have some influence over the data that
is included in block and, hence, on this kind of bea-
con. Some extensions of this initial idea have used



delay functions (Bünz et al., 2017; Bonneau et al.,
2015). The use of a delay function to compute the
beacon’s output would mean that when the output of
the beacon is revealed, the producers are no longer
able to manipulate the data they have included in
blocks involved in producing this output.

Some approaches have used verifiable delay func-
tions (VDFs) (Boneh et al., 2018) to create a random
beacon (Ephraim et al., 2020; Schindler et al., 2021).
They rely on functions that, assuming they take t time
to compute, computing their i-fold composition takes
about i · t, and parallelism does not improve on this
time. Moreover, one can verify the correctness of an
output of this function for a specific i, and can do
so efficiently without having to recompute the i-fold
composition. With such a function, a random beacon
can be created by setting an initial random seed and
having the ith output of the beacon as the ith composi-
tion of this function applied to the seed.

7 CONCLUSIONS

In this paper we have demonstrated that delay encryp-
tion can create unbiassable random oracles in ways
that treat the threat of selective non-participation as a
primary issue.

Delay encryption is a very useful tool for keep-
ing diverse participants honest, when no one is sure
who is trustworthy. Almost always, as here, the extra
security comes from preventing untrustworthy parties
from withdrawing in a way that is beneficial to them.
Since reliable and secure random oracles are so im-
portant to blockchains, we believe that the two related
approaches we have given to building these oracles
are worthwhile.

Blockchains frequently have to make fair deci-
sions that are demonstrably independent of their par-
ticipants. A random oracle of the sort we have created
is key to this, as well as to the continued integrity of
the chain.

Our two options, one employing significant se-
quential computation and the other exploiting the
blockchain itself as a synthetic TTP, each have their
advantages and drawbacks. We imagine that which to
use will depend on circumstances.
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APPENDIX

The calculations in Section 3 are based on approxi-
mating the cumulative distribution function of the bi-
nomial with N trials and probability p, by the nor-
mal distribution with mean µ = N p and variance σ2 =
N p(1− p). The main reference is the Wikipedia arti-
cle (Wikipedia contributors, 2022).

We first calculated an approximation for proba-
bilities of the form 10−k of the multipliers wk such
that Pr[X > wkσ] = 10−k. Some of these values are
quoted in the article; others were derived by numer-
ically solving the following approximation derived
from the two-sided one there.

k ln(10) = w2
k/2+ ln(wk)+ ln(

√
2π)

Here one-sided means we are interested in the random
variable being exceptionally large only; two sided
means we add the probability of it being far away
from the mean on either side.

We then calculated the thresholds on N for each p
and k such that µ+wkσ = N/2 and rounded up.

In Table 1, we also give the multiple Mσ of the
standard deviation, such that the probability that the
normal distribution exceeds Mσσ above the mean,
equivalent to each given value of ε.

The calculations were made using Wolfram Al-
pha (Wolfram Alpha LLC, 2022).


