
Seraph: Enabling Cross-Platform Security Analysis For
EVM and WASM Smart Contracts

Zhiqiang Yang
zhiqiang@oxhainan.org

Oxford-Hainan Blockchain
Research Institute
Hainan, China

Han Liu
liuhan@oxhainan.org

Oxford-Hainan Blockchain
Research Institute
Hainan, China

Yue Li
liyue@oxhainan.org

Oxford-Hainan Blockchain
Research Institute
Hainan, China

Huixuan Zheng
huixuan@oxhainan.org

Oxford-Hainan Blockchain
Research Institute
Hainan, China

Lei Wang
wanglei@oxhainan.org

Oxford-Hainan Blockchain
Research Institute
Hainan, China

Shanghai Jiao Tong University
Shanghai, China

Bangdao Chen
bangdao@oxhainan.org

Oxford-Hainan Blockchain
Research Institute
Hainan, China

ABSTRACT

As blockchain becomes increasingly popular across various indus-
tries in recent years, many companies started designing and devel-
oping their own smart contract platforms to enable better services
on blockchain. While smart contracts are notoriously known to be
vulnerable to external attacks, such platform diversity further am-
plified the security challenge. To mitigate this problem, we designed
the very first cross-platform security analyzer called Seraph for
smart contracts. Specifically, Seraph enables automated security
analysis for different platforms built on two mainstream virtual
machine architectures, i.e., EVM and WASM. To this end, Seraph
introduces a set of general connector API to abstract interactions
between the virtual machine and blockchain, e.g., load and update
storage data on blockchain. Moreover, we proposed the symbolic se-
mantic graph to model critical dependencies and decoupled security
analysis from contract code as well. Our preliminary evaluation on
four existing smart contract platforms demonstrated the potential
of Seraph in finding security threats both flexibly and accurately. A
video of Seraph is available at https://youtu.be/wxixZkVqUsc.

CCS CONCEPTS

• Security and privacy → Domain-specific security and privacy
architectures.

KEYWORDS

smart contracts, connector API, symbolic semantic graph
ACM Reference Format:

Zhiqiang Yang, Han Liu, Yue Li, Huixuan Zheng, Lei Wang, and Bangdao
Chen. 2020. Seraph: Enabling Cross-Platform Security Analysis For EVM
and WASM Smart Contracts. In 42nd International Conference on Software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3382157

Engineering Companion (ICSE ’20 Companion), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3377812.3382157

1 INTRODUCTION

The blockchain technology has been undergoing a rapid growth
in recent years via promising to enable traceable transactions in
a decentralized network without a trusted third-party. As a form
of blockchain programs or scripts, smart contracts [17] have been
gaining an increasing popularity across different application do-
mains as well, e.g., supply chain finance, insurance, cryptocurrency
etc.. In order to achieve better blockchain services, many companies
introduced their own smart contract platforms.

1 function transfer(address _s, address _r, uint256 _val) {

2 ...

3 balances[_s] = balances[_s].sub(_val);

4 balances[_r] = balances[_r].add(_val);

5 emit Transfer(_s, _r, _val);

6 }

(a) transfer function on Ethereum

1 function transfer(string _s, string _r, uint256 _val) {

2 ...

3 Entry entry0 = table.newEntry();

4 entry0.set("account", _s);

5 entry0.set("asset_value", int256(_s_val - _val));

6 int cnt = table.update(_s,entry0,table.newCondition());

7 ...

8 }

(b) transfer function on FISCO-BCOS

Figure 1: Smart contracts on Ethereum and FISCO-BCOS

Commonly, these platforms share similar infrastructure but man-
ifest unique features at the same time. For example, while both
Ethereum [17] and FISCO-BCOS [1] use the Ethereum Virtual Ma-
chine (EVM) runtime, they adopt different design for blockchain

21

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3377812.3382157
https://doi.org/10.1145/3377812.3382157
https://doi.org/10.1145/3377812.3382157

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Zhiqiang Yang, Han Liu, Yue Li, Huixuan Zheng, Lei Wang, and Bangdao Chen

Solidity

C
FG

 B
u

ild
er

Sy
m

b
o

lic
 E

xe
cu

ti
o

n

En
gi

n
e

EV
M

W
A

SM

EV
M

W
A

SM

Connector
API

Ethereum FISCO-BCOS XuperChain EOS …

CFG Config

Se
cu

ri
ty

 A
n

al
yz

er

C++

Go

…

CFG SSG

Report

Figure 2: The general workflow of cross-platform security analysis for smart contracts.

storage. From the security perspective, such diversity raises new
challenges for smart contracts, which are notoriously known to be
vulnerable to external attacks [11, 13, 16]. That is, despite that those
platforms have similar designs, it is still non-straightforward to
create security analyzers for them, i.e., adapting a tool of platform
A for B commonly involves low-level code refactoring across many
components, which is a non-trivial work in practice. We further
summarize concrete challenges as below.

Challenge 1: VM-Blockchain Interaction. One of the major
differences among smart contract platforms is the way virtual ma-
chines interact with their blockchains, e.g., load and update storage
data on blockchain. As shown in Figure 1, two transfer functions
are defined on Ethereum and FISCO-BCOS, respectively. Particu-
larly, Ethereum stores data in state variables (i.e., balances in this
case), thus storage accesses are realized via variable assignments
(line 3 and 4 in Figure 1a). On the other hand, FISCO-BCOS adopts
the table design where data is stored in a database. In that case, load
and update on a storage are realized via table operations, as line 4-6
in Figure 1b. Although the contracts are manipulating storage data
in both cases, analyzing them is non-straightforward since we need
to handle storage access instructions for Ethereum but function
calls for FISCO-BCOS.

Challenge 2: Security Analysis Process. Moreover, the current
design of security analyzers is highly platform-specific. That is,
the analyzer on one platform can hardly be directly applied in
another. The reason behind is the lack of a general form of semantic
representation for smart contracts where different types of security
analysis can be implemented.While this is a long-lasting topic in the
community of programming language, it is relatively little studied
in the contexts of smart contracts, leaving room for adaptation and
further optimization.

The Seraph Solution. To overcome challenges above, we de-
signed and developed Seraph, the very first cross-platform security
analyzer for blockchain smart contracts based on EVM and WASM
runtime. Specifically, Seraph highlighted a set of connector API to
abstract the interaction between virtual machines and their host
blockchains. Furthermore, we proposed the symbolic semantic graph
(SSG) as a general and lightweight representation for critical smart
contract logics and dependencies. Compared to traditional program

dependency graphs, SSG is able to model blockchain semantics
and capture a large classes of smart contract vulnerabilities in an
efficient and accurate way. In the preliminary evaluation, we ap-
plied Seraph on four smart contract platforms in the literature and
managed to uncover security threats for all of them.

2 CROSS-PLATFORM SECURITY ANALYSIS

2.1 Overview

The general workflow of Seraph is shown in Figure 2. Specifically,
Seraph accepts smart contracts written in different high-level pro-
gramming languages as inputs, e.g., Solidity, C++, Go etc.. Addition-
ally, Seraph requires specifying the target smart contract platform,
e.g., Ethereum. Based on the platform, the user is allowed to config-
ure the structure of control flow graph (CFG), e.g., labeling low-level
instructions as control flow operators. Then, the input smart con-
tracts are compiled and transformed into an EVM or WASM CFG
depending on which infrastructure is used in the platform. Further-
more, Seraph leverages symbolic execution [10] to systematically
explore the CFG. Particularly, we implement a group of Connector
API (§2.2) for the target platform in order to abstract VM-blockchain
interaction. The goal of symbolic execution is to generate symbolic
semantic graph (SSG, explained in §2.3) as a lightweight represen-
tation for the input smart contracts.

Next, the security analysis for the input smart contracts is au-
tomated and based on SSG. Specifically, the analysis task (e.g., de-
tecting integer overflow) is converted to a multi-path graph query,
i.e., search for multiple paths in SSG. Lastly, a security report is
generated for the analysis.

2.2 Connector API

As aforementioned, the Connector API is defined to abstract the
interaction between a virtual machine and its host blockchain. Gen-
erally, Seraph provided two types of APIs, i.e., environment APIs
and state APIs, respectively. Environment APIs are used to compute
information of the blockchain environment. Figure 3a shows an
implementation of the get_block_hash API for Ethereum. Specifi-
cally, the API retrieves a hash value for a given block with number
_num. In the implementation of the API, we compute the difference
between a symbolic value Hb (current block number) and _num.

22

Seraph: Enabling Cross-Platform Security Analysis For

EVM and WASM Smart Contracts ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

Then, symbolic constraints are generated depending on the differ-
ence. According to Ethereum, if the difference is less than 256, a
concrete block hash is generated. Here, we used a symbolic value
to represent the hash. Otherwise, the hash is set to 0.

1 def get_block_hash(_num):

2 gap = Hb - block_num

3 solver.add((h == HASH_ + _num && gap < 256) \

4 || (h == 0 && gap >= 256))

5 stack.push(h)

6 return h

(a) get_block_hash API on Ethereum

1 def update_storage(key, value):

2 if key in list(storage.keys()):

3 storage[key] = value

4 ssg.update(key, value, meta)

(b) update_storage API on FISCO-BCOS

Figure 3: Two instances of connector APIs

On the other hand, Figure 3b demonstrates an implementation of
the update_storage state API, which is designed to load or update
storage data on blockchain. Specifically, the API takes as inputs
a key-value pair. Given an existing key, Seraph first updates the
storage data (line 3) and further the dependency in the symbolic
semantic graph (line 4), which will be explained later.

2.3 Symbolic Semantic Graph

The design of symbolic semantic graph (SSG) is based on an ob-
servation that the majority of security issues in smart contracts
can be encoded as simple data dependency problems, i.e., whether
data A is dependent on data B. SSG is designed to model critical
dependency information in a concise manner.

1 function reward(uint8 amount):

2 if(owner == msg.sender)

3 balances[msg.sender] += amount;

(a) A simple Solidity function on Ethereum

msg.sender

amount

owner

balances

+@x

==@y

1 2

3 4

(b) SSG of Figure 4a

Figure 4: An example of symbolic semantic graph

Figure 4a shows an Ethereum Solidity function reward, which
increases the balance of contract owner. Furthermore, the SSG of
reward function is shown in Figure 4b. We defined three types
of graph nodes, i.e., Value Node (dark ellipse), Environment Node
(light ellipse) and Flow Node (diamond). Value node models stor-
age data on blockchain. Environment node indicates environment

Analysis Core

Semantic Graph SDK
• create_graph
• add_ValueNode
• add_FlowNode
• add_EnvNode
• add_FlowEdge
• add_CrtlEdge
• add_pc_attr
• add_op_attr
• …

Symbolic Execution Engine

CFG Builder Preprocessor

Semantic SDK Connector API

IMC

EVM

EVM Engine

WASM EVM WASM

WASM Engine

VM
stack

memory

PRNG Reentrancy

DoS TOD Overflow

Analysis
Library

Graph

User Manager Task Manager

Ethereum FISCO-BCOS XuperChain EOS

……

NetworkX

Environment API
• get_tx
• get_block_hash
• get_msg_sender
• Keccack256
• …

State API
• load_storage
• update_storage
• …

Figure 5: The architecture of Seraph.

information of blockchain itself. Flow node is a connection point.
In addition, SSG has two types of edges, i.e., flow edge (solid line)
and control edge (dashed line). While flow edges represent data
dependency (the value of balances is dependent on the value of
amount), control edges refer to control dependency (msg.sender
affects the execution of balances update). Both nodes and edges
can have attributes. In this case, the flow node has an attribute +@x,
indicating that the data dependency is involved in an addition at
program counter x. Similarly, ==@y indicates the control edge de-
rives from a equivalence check at program counter y. Compared to
traditional program dependency graph (PDG) [7, 8, 15], SSG inter-
prets blockchain semantics and discards program orders to reduces
state space. Based on SSG, security analysis is encoded as multi-
path graph queries. For instance, to detect potential integer overflow
in the contract, we could ask Seraph to search for crossing paths
of flow and control edges, e.g., path 2 and 3 → 4. Although the
addition introduces a potential overflow, the execution is controlled
by a sanity check on msg.sender thus leads to no overflow.

3 DESIGN OF SERAPH

Architecture. The current version of Seraph is a web platform
with front- and back-end services. The back-end architecture of
Seraph is shown in Figure 5. Specifically, at the top layer are user
and task management modules, which are designed to manage reg-
istered users and analysis tasks submitted to Seraph. The rest of
the components are used to enable cross-platform security anal-
ysis as discussed above, including preprocessor (compile, parse,
disassemble etc.), CFG builder, connector API, symbolic execution
engine for EVM and WASM, and core analyzers. We created the
Semantic SDK to help construct intermediate representation (i.e.,
SSG) for security analysis. For example, add_ValueNode in the SDK
is designed to insert a value node to an existing SSG. Moreover,
we have also integrated an Analysis Library to encapsulate the
implementation of SSG. We developed Seraph in Python and used
Z3 [2] as the SMT solver. In terms of the analysis library, NetworkX
was adopted to construct SSG structures.

Main Functionalities. Figure 6 shows a screenshot of Seraph.
Currently, the target users include both individual smart contract
developers and blockchain service providers. Three main function-
alities are provided, i.e., user registration, task management and

23

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Zhiqiang Yang, Han Liu, Yue Li, Huixuan Zheng, Lei Wang, and Bangdao Chen

Figure 6: A screenshot of Seraph.

security analysis. The platform works in a push-button manner. Af-
ter a user logs in and pushes the analysis button, a task is submitted
to Seraph for job scheduling. Once the analysis is finished, users
can explore detailed information, including an end-to-end exploit.

4 PRELIMINARY EVALUATION

Table 1 describes the preliminary detection accuracy on Ethereum
contract benchmarks [4, 5]. Compared to analyzers in the literature,
i.e., Oyente [13], Securify [16] and Mythril [3], Seraph achieved a
higher accuracy over four types of vulnerabilities.

Table 1: Detection accuracy on Ethereum. IO: Integer over-

flow. PRNG: Psuedo Random Number Generator. IMC: Inse-

cure Message Call. ∗: Unsupported.

Threats Oyente Securify Mythril Seraph

IO 64.29% ∗ 85.71% 92.86%
DoS ∗ 40.00% ∗ 100.00%
PRNG ∗ ∗ 33.33% 66.67%
IMC 66.67% 66.67% 33.33% 83.33%

Table 2: Detection of integer overflow on four platforms.

Contract Platform Detected?

overflow_eth.sol Ethereum ✓
overflow_bcos.sol FISCO-BCOS ✓
overflow_xchain.cc XuperChain ✓
overflow_eos.cc EOS ✓

Table 2 shows cross-platform analysis for integer overflows. The
evaluation data is available at https://njaliu.github.io.

5 RELATEDWORK

Security problems of smart contracts have been widely discussed
in recent years [11–13, 16]. Luu et al. highlighted four types of
vulnerabilities for smart contracts [13]. Tsankov et al. proposed a

verification technique [16], which transforms Ethereum smart con-
tracts into Datalog logics [6]. Permenev et al. further presented their
solution to verify smart contracts in a inductive manner [14]. In ad-
dition to security problems, Liu et al. proposed a statistical approach
to identify potential code smells as well [12]. While this family of
works mainly focused on Ethereum smart contracts, Seraph aims
at enabling cross-platform security analysis to address more real-
world concerns. Furthermore, the symbolic semantic graph (SSG)
is related to program dependency graphs (PDG) which were widely
discussed in the community of programming languages [7–9, 15].
Particularly, SSG can be considered as a lightweight variant of PDG
which defines general blockchain semantics.

6 CONCLUSION

In this work, we highlighted the Seraph tool, a cross-platform se-
curity analyzer for blockchain smart contracts based on the EVM
and WASM runtime. Specifically, Seraph enables a general abstrac-
tion for the interaction between virtual machines and their host
blockchains via connector API. Moreover, Seraph introduced sym-
bolic semantic graph as a lightweight representation for security
analysis. In the preliminary evaluation, we applied Seraph in ana-
lyzing smart contracts on four existing blockchain platforms.

7 ACKNOWLEDGMENTS

Lei Wang is supported by National Key Research and Development
Program of China No. 2018YFB0803400 and No. 2019YFB2101601.

REFERENCES

[1] 2019. FISCO-BCOS. https://fisco-bcos.org/.
[2] 2019. Microsoft Z3 SMT Solver. https://z3.codeplex.com/.
[3] 2019. Mythril. https://github.com/ConsenSys/mythril.
[4] 2019. Not so smart contracts. https://github.com/crytic/not-so-smart-contracts.
[5] 2019. SWC Registry. https://swcregistry.io.
[6] Thomas Eiter, Georg Gottlob, and Heikki Mannila. 1997. Disjunctive datalog.

ACM Transactions on Database Systems (TODS) 22, 3 (1997), 364–418.
[7] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-

pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[8] Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming Languages and
Systems (TOPLAS) 12, 1 (1990), 26–60.

[9] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. 2015. Exploring
and enforcing security guarantees via program dependence graphs. In ACM
SIGPLAN Notices, Vol. 50. ACM, 291–302.

[10] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[11] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
ReGuard: finding reentrancy bugs in smart contracts. In ICSE (Companion). ACM,
65–68.

[12] Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun. 2018. S-gram:
towards semantic-aware security auditing for Ethereum smart contracts. In ASE.
ACM, 814–819.

[13] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 254–269.

[14] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2019. Verx: Safety verification of smart contracts. Security and
Privacy 2020 (2019).

[15] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, 49–61.

[16] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. arXiv preprint arXiv:1806.01143 (2018).

[17] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014).

24

https://fisco-bcos.org/
https://z3.codeplex.com/
https://github.com/ConsenSys/mythril
https://github.com/crytic/not-so-smart-contracts
https://swcregistry.io

