SAFEPAY on Ethereum: A Framework For
Detecting Unfair Payments in Smart Contracts

Yue Li* Han Liu* Zhigiang Yang*

Qian Ren*

Lei Wang*' Bangdao Chen*

*Oxford-Hainan Blockchain Research Institute
Hainan, China
tShanghai Jiao Tong University
Shanghai, China

Abstract—Smart contracts on the Ethereum blockchain are
notoriously known as vulnerable to external attacks. Many of
their issues led to a considerably large financial loss as they
resulted from broken payments by digital assets, e.g., cryptocur-
rency. Existing research focused on specific patterns to find such
problems, e.g., reentrancy bug, nondeterministic recipient etc., yet
may lead to false alarms or miss important issues. To mitigate
these limitations, we designed the SAFEPAY analysis framework
to find unfair payments in Ethereum smart contracts. Compared
to existing analyzers, SAFEPAY can detect potential blockchain
transactions with feasible exploits thus effectively avoid false
reports. Specifically, the detection is driven by a systematic search
for violations on fair value exchange (FVE), i.e., a new security
invariant introduced in SAFEPAY to indicate that each party
“fairly”” pays to others. The preliminary evaluation validated the
efficacy of SAFEPAY by reporting previously unknown issues and
decreasing the number of false alarms.

Index Terms—Smart contract; Symbolic execution; Taint anal-
ysis; Insecure message call

I. INTRODUCTION

As smart contracts were introduced on the Ethereum
blockchain [1], their security issues have been raising concerns
in the ecosystem. Since smart contracts often involve irrevo-
cable payment by real-world digital assets, any vulnerability
might lead to permanent financial loss on blockchain. For
example, we use a simplified case in Figure 1 to illustrate the
DAO attack in 2016 which caused over 50 million US dollars
to be stolen on Ethereum. Specifically, the attacker initiated the
attack by sending a transaction to the DAO contract to call the
withdraw function. According to the service logic, a payment
will be made from DAO to the sender of the transaction (line
4) with an execution context switch as well. However, the
“fallback™ function in attacker maliciously calls back to DAO
repeatedly to receive more unexpected payment before the
balance is updated at line 5.

Ethereum Payment Attacks. Payment attacks as in Figure 1
were classified as reentrancy bugs and widely discussed in
previous research [2]-[4]. To detect such issues, existing
approaches analyze transactions (either statically based on a
given contract or dynamically at runtime) to check whether
a payment can be reentered according the program context.
In addition to reentrancy, other types of payment attacks on
Ethereum were studied as well. For example, state update after
a payment was used as a pattern to flag potential security prob-

DAO Confratt Attack Contract

- : a. send a transaction g

-_—

-

c. re-enter

1 function withdraw() public { attack()
2 // require(msg.sender == owner);
3 uint amount=balances[msg.sender];
4 [require(msg.sender.call.value(amount)()) ;] EE— fa//back()
5 balances[msg.sender]l =0;
6 1}

b. pay and switch to fallback
Fig. 1: The simplified DAO attack

lems [5]. A recent work pointed out that nondeterminism due
to transaction scheduling can lead to broken payments with
manipulated recipients [6]. Unfortunately, heuristics adopted in
existing analyzers often introduce false reports in many prac-
tical cases. For example, if the comment at line 2 in Figure 1
is removed, the payment at line 4 becomes secure since only
authorized accounts are allowed to receive the cryptocurrency.
However, existing approaches will still consider the payment
as vulnerable thus generate a false alarm.

Unfair Payment. In this demo paper, we highlighted a
new security abstraction for payments in Ethereum smart
contracts, i.e., unfair payment (UP). Compared to pattern-
based heuristics in the literature, UP provides a systematic
way to analyze the root cause of a broken payment therefore
largely avoid false alarms in the detection. Generally, instead
of searching for a certain set of payment-related operations
(e.g., payment followed by a write to blockchain state), we
reason a complete transaction to check whether a party “fairly”
pays to another without making undesired profits. More specif-
ically, the fairness is automatically determined via fair value
exchange (FVE), which will be explained later. We summarize
our main contributions as below.

— We introduced a novel abstraction unfair payment (UP),
which is more general than existing heuristics.

— We developed the analysis framework SAFEPAY to auto-
matically detect UP in Ethereum smart contracts.

— We conducted a large-scale evaluation in Ethereum and
found previously unreported payment problems.

Demonstration Plan. Our demonstration of SAFEPAY will
showcase its capabilities in finding real-world security issues
of Ethereum smart contracts. The detailed plan includes: i) an

李悦
Yue Li

a. ReconOwned()

Mined Block
b. addMember() Mined Blocks
¢. newProposalf() Miner a,...,b,...,c,....d
d. executeProposal - - [—-
4 () . -— @ H H ,0,...,b,
- R X
1 contract Congress { 13 function newProposal(uint proposallD,
2 Proposal[] public proposals; 14 Proposal _p) onlyMembers { Ethereum Peer o
3 Member[] public members; 15 .
4 address owner; 16 proposals[proposalID].push(_p); @]
5 17 =
6 function ReconOwned() public { 18 }
7 owner = msg.sender; 19
8 } 20 function executeProposal(uint p) public {
9 21 L ether value
10 function addMember(address _m) 22 proposals[p].call.value(amount)(); proposal[p]
23 -
11 onlyOwner {...} " } data value
25}

Fig. 2: An example to help illustrate Fair Value Exchange, FVE. Specifically, the mainnet address of the smart contract is
0x5bd6a6d4b21d4b4952426ch23aea7f7bb4944c9b on Ethereum. We simulated a UP attack on the Ropsten testnet via the
transaction 0xcb3198c3dc8f6fb0487aba5ca8fca6364e0db9bchd004cb632fleedlch705faf.

automatic detection process on a vulnerable contract, ii) in-
depth explanation of the detection output and iii) more compar-
ative tests on representative secure/vulnerable contracts. The
participants will be able to interact via the SAFEPAY web
platform and perform analysis on different smart contracts.

II. FAIR VALUE EXCHANGE

We have designed a new security invariant called Fair
Value Exchange (FVE) to model the fairness of blockchain
payments. A payment m in Ethereum is a 5-tuple m =
(g,s,7,v,C), where g is the amount of gas (i.e., transaction
fee) granted for m, s and r are the sender and recipient
addresses of the payment respectively, v is the amount of
ether (i.e., Ethereum cryptocurrency) to be paid and C' =
{co,c1,- -+ ,c,} is a set of conditions to permit the payment.
For example, the payment at line 4 in Figure 1 is formulated as
(g*,DA0, I, amount, ¢). Particularly, g* denotes the amount
of available gas and I is msg.sender. ¢ is an empty set.

Values on Ethereum. Two types of values are considered on
Ethereum, i.e., ether and data. Specifically, ether is the built-in
cryptocurrency on Ethereum and data refers to the blockchain
storage, which is often used to store a specific kind of digital
assets, e.g., ERC20 token.

Value Transfer. Based on two types of values on Ethereum,
we now describe the processes of value transfer. To begin
with, transfer of ether is realized via payments between two
accounts X and Y on blockchain as aforementioned (denoted
as X — Y). Moreover, transfer of data value is often fulfilled
via updates on blockchain storage, e.g., transfer of an ERC20
from X to Y (denoted as X »— Y) amounts to updating
the storage data balances in a token smart contract, e.g.,
update(balances(X]) and update(balances[Y]). For cases
where Y is a smart contract, the value transfer commonly
involves only the update on the balance of X itself.

Fair Value Exchange. Conceptually, FVE is designed to

model a transaction scenario ¢ (with a single or multiple
transactions) where each party fairly “pays” (i.e., transfers
values) to others in ¢. Specifically, given a transaction scenario
t = s189---s, where s; (1 < i < n) is an operation, e.g.,
payment, update on storage, arithmetic operations efc., we use
Vi (r) to store a key-value table of ether value transfer to
a blockchain address r in t. For example, (s,v) € VX (r)
indicates a payment with v ether from s to r. Moreover, we
use Vi, (r) to denote a set of data value transfer from r, e.g.,
x@¢ € V7, is an update = at program counter ¢ parameterized
by r. Z?:l{vj | (sj,v;) € V& (r)} = 0 indicates a zero-ether
transfer to r. Similarly, V!, (r) = ¢ means no data values are
paid from r. For a blockchain address r, we define an FVE
on t w.rt. r if at least one of the following conditions hold:
D X5 {vy | (sj,05) € VE()} # 0 & VL(r) # ¢ i)
t only permits a finite set of addresses to execute. Figure 2
shows an illustrative example. In a transaction scenario with
four transactions to a smart contract Congress, the attacker
enforced a specific ordering (i.e., a,b,c,d) to (a) lift himself
as an owner, (b) add himself as a member, (c) insert a new
proposal and (d) make a payment from the contract to himself.
The four transactions were packaged into a block in the
process of mining. Given different values of gas, the specific
ordering can be accepted in other Ethereum peers with a
large probability. The transaction scenario violated FVE by
involving an ether transfer to proposal[p] but without any
data value transfer, therefore led to an UP.

III. THE SAFEPAY FRAMEWORK

Based on the FVE invariant as introduced above, we
designed the SAFEPAY framework to automatically detect
unfair payments in Ethereum smart contracts. The architecture
of SAFEPAY is shown in Figure 3. Generally, four public
interfaces are provided for users to integrate SAFEPAY with
their own software. request and response are designed to

start security analysis and retrieve output. configure and query
are used to specify and check functional parameters. Given
an input smart contract (either with Solidity source code
or EVM bytecode), the Input Preprocessor is executed to
produce necessary information for further analysis, e.g., an
Application Binary Interface (ABI) file, the assembly code
of the contract and a source map file. Next, a CFG Builder
is called to generate the Control Flow Graph (CFG), i.e.,
group instructions into connected basic blocks. Particularly,
the CFG in this step might be incomplete since some basic
block transitions are known at runtime. Then, CFG is used as
a representation of the contract in following processes.

Service Interfaces

[request][response][configure][query]

JSON Report

Transaction Metadata

Metadata

Generator

Core
Detector

P,

SMT Solver

Symbolic Analysis

Engine
Control Flow Graph
2B File CFG Builder
Assembly
Source Map
Input Preprocessor]

- = =
- e Y
- — e -
-— — i

Solidity/EVM Bytecode Contracts

AR

Fig. 3: The architecture design of SAFEPAY.

Symbolic Analysis Engine. Security analysis in SAFEPAY
is started from the module Symbolic Analysis Engine, which
is designed to symbolically execute possible transactions on
the given contract CFG and adopted in previous research [2],
[7]. The process in SAFEPAY is similar and works as follows.
First, we symbolize a transaction by using symbolic values for
its data, e.g., transaction input is represented as the symbol
1;. Then, basic blocks from a CFG are iteratively fetched for
execution on the symbolic input. For each basic block, all the
instructions are interpreted by the engine to update contract
storage or communicate with other contracts on blockchain.
Unlike traditional processes, SAFEPAY keeps track of data
flow in this step to capture important data dependencies. This
is realized via taint analysis [8], i.e., mark the transaction input
as a taint and propagate tainted values during execution. For
example, on symbolically executing the ReconOwned function
in Figure 2 (line 6-8), taint analysis would create a dependency
from msg.sender (address of the transaction sender) to the
storage data owner. After the execution of a basic block com-

pletes, a following block is selected to execute. Particularly,
the engine generates a path condition to reach the new block,
i.e., a constraint on symbolic values. An SMT solver, e.g., 73!,
is used to solve the constraint and skip infeasible transactions.
The symbolic execution works in a systematic manner to refine
the CFG on the fly and cover it as much as possible.

Metadata Generator. During a CFG of a contract is being
symbolically executed, a Metadata Generator is repeatedly
invoked to produce transaction metadata for security analysis.
Given a transaction tz, its metadata Sy, is Sy, = (Upy, Pis)
where Uy, is a set of conditional updates on storage (i.e., data
value transfer) and Py, is a set of payments (i.e., message
calls [1] with or without ether attached). For a storage update
u : (v,,{co, - ,cx}) € U, v and | denote the new
value v of the storage at location I. {cg,--- ,c} stands for
a set of conditions to reach u. Moreover, for a payment
p: {g,s,1,0,CYQi € Py, it is encoded as described in §IT
with a program counter ¢. In general, Metadata Generator
offers interfaces to other components, e.g., Symbolic Analysis
Engine, to generate transaction metadata. In this sense, the
generation of metadata is decoupled from symbolic execution
such that a new type of metadata can be flexibly extended.
Once a transaction in CFG is processed, the corresponding
metadata is produced and sent to the Core Detector to search
for potential unfair payments.

Core Detector. The detection of UP is performed by the
Core Detector in SAFEPAY, which takes as input a group
of transaction metadata and produces a JSON report for UP
issues. Similar to Metadata Generator, Core Detector is in-
voked by Symbolic Analysis Engine at runtime. The algorithm
to detect UP works as follows:

Step 1 Generate a set T of transaction scenarios with a
specific bound k. For t € T', t = tx1txs - - - txg has no
more than k transactions and at least one payment.

Step 2 Pick a t = txytxsy - - - tx,, from T and analyze its se-

quence of transaction metadata S;1.55 --- S, (m < k).

For S; = (U;, P;) (1 <i < m), we update the V, (r)

and V', (r) according to value transfers involved in U;

and P; for a specific address r.

Once all the metadata in ¢ is processed, we detect UP

in ¢ according the invariant defined in §II. If at least

one UP is detected, we store ¢ to the report.

If T is fully covered, the detection completes. Other-

wise, go back to Step 2.

Step 3

Step 4

Step 5

IV. PRELIMINARY EVALUATION

The preliminary evaluation for SAFEPAY was conducted on
two open-sourced security benchmarks?3, as shown in Table 1.
We only considered payment-related issues. Comparison ana-
lyzers include Securify [5], Mythril* and Oyente [2].

Uhttps://github.com/Z3Prover/z3
Zhttps://github.com/SmartContractSecurity/SWC-registry
3https://github.com/crytic/not-so-smart-contracts
“https://github.com/ConsenSys/mythril-classic

TABLE I: UP Detection results. v'indicates a true positive or
negative. X refers to a false positive or negative.

Contract SAFEPAY Securify Mythril Oyente

simple_dao

DAO
SpankChain_Payment
modifier_reentrancy
simple_dao_fixed
modifier_reentrancy_fixed

LAaxAAS
CAXXAS

CAX XA
X X N X XK

Compared to existing analyzers, SAFEPAY was more ac-
curate on six representative cases (the first four are buggy
and the last two are non-buggy). We have also conducted a
large-scale evaluation on deployed Ethereum smart contracts,
where 46,237 contracts were considered in total. In terms of
accuracy, over 70% reports from comparison analyzers were
false positives while only 11.9% for SAFEPAY. There were
also cases where SAFEPAY reported UP problems that were
missed by others. Figure 2 was a case in this kind. We do not
include all the details due to space limit.

V. DEMONSTRATION DESCRIPTION

Currently, the SAFEPAY framework is implemented in
Python as a command line tool for Linux-based operating
systems, which requires dependencies including Python 2.7,
the solc compiler for Solidity! and evm for Ethereum. A
simple command to run SAFEPAY is:

$ safepay -s example.sol -o report.out -src -b 2

Specifically, safepay is a running script to start a detection.
-s and -o specify the input and output files respectively. -src
indicates the input is a source code contract (-bin for an input
of binary code). -b is the value of analysis bound as described
in §III. In this case, we configured SAFEPAY with a bound of
2, i.e., SAFEPAY would consider transaction scenarios with no
more than 2 transactions. In the demonstration, we set up a
web-based platform with SAFEPAY as a back-end for users to
conveniently interact with the framework. Two use cases will
be used to demonstrate SAFEPAY, i.e., basic detection and
analysis tuning via the bound configuration. While the first
use case is to help participants understand basic capabilities
of SAFEPAY, the second use case is designed to show useful
skills when analyzing complicated smart contracts.

Use Case 1: Basic Detection. In the first use case, the
participants will be using SAFEPAY on two given smart
contracts, i.e., a vulnerable contract with known UP and a
secure contract, respectively. First, we go through the source
code of the vulnerable contract with participants and introduce
its code structures. Next, a participant will start the detection of
SAFEPAY using the basic configuration. During the analysis,
we let him or her monitor the runtime logs generated at back-
end of the web platform. When the analysis finishes, the
platform will display an overview of the detection, e.g., the
number of vulnerabilities found, time used in the detection
etc.. Furthermore, we go into details of the detected UP with

Uhttps://solidity.readthedocs.io

participants and explain how the potential attack manages
to exploit an unfair payment. Furthermore, the participants
can try simulating the attack on Ethereum testnet by creating
malicious transactions based on the detection report that is just
generated by SAFEPAY.

Additionally, the participants will be asked to fix the vulner-
able contract by modifying the buggy code. Once done, they
can put the fixed contract to SAFEPAY again for regression
analysis. In this run, the participants can make sure their fix
is correct if no more UP is reported by SAFEPAY.

Use Case 2: Analysis Tuning. In further, the second use
case in the demonstration will be focusing on analyzing more
complicated smart contracts with SAFEPAY. Participants will
be given a group of medium-size and large-size contracts
for UP detection. Then, they will be guided to use different
bound values to analyze those contracts. More specifically,
participants will be able to learn about the tradeoff in tuning
SAFEPAY. For example, by understanding the application
context of a contract (e.g., what kind of transactions the
contract may receive), would we be able to bound the analysis
in a cost-efficient manner. For example, a smart way to use
SAFEPAY for library contracts is specifying a small bound
value (e.g., 1 or 2), because those contracts commonly receive
similar transactions. In contrast, we could try relatively large
bound values (e.g., 3 or 4) for important service contracts,
which often communicate with the blockchain under various
contexts, e.g., distributed and dependent transactions whose
schedule is highly non-deterministic. In that case, a large
bound value can help dig out hidden payment issues although
it may be more expensive to run SAFEPAY.

VI. ACKNOWLEDGEMENT

Lei Wang is supported by National Key Research
and Development Program of China (No.2018YFB0803400,
No.2019YFB2101601).

REFERENCES

[1]1 G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254-269.

[3] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in Proceedings of the 40th
International Conference on Software Engineering: Companion Pro-
ceeedings. ACM, 2018, pp. 65-68.

[4] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘“Zeus: Analyzing safety
of smart contracts.”” NDSS, 2018.

[5] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 67-82.

[6] S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic payment bugs
in ethereum smart contracts,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1-29, 2019.

[7] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automati-
cally exploit smart contracts,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 1317-1333.

[8] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3-4.

