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Abstract—While smart contracts have enabled a wide range
of applications in many public blockchains, e.g., Ethereum, their
security issues have been raising an increasing number of threats
on the stability of blockchain ecosystem. In practice, many
external attacks on smart contracts result from broken payments
with digital assets, e.g., cryptocurrencies. While an increasing
number of research works have been focusing on such problems,
many of them adopted pattern-based heuristics (e.g., reentrancy)
to find payment-related attacks thus can incur a considerably
large portion of both false positives and negatives.

To overcome these limitations and achieve better payment
security on blockchain, we introduced a new class of payment
attacks in this paper, i.e., unfair payment (UP). Compared to
existing heuristics, UP semantically captures a wider range
of payment attacks. Furthermore, we highlighted the general
framework SAFEPAY to systematically detect UP. The key insight
behind is a novel security invariant, i.e., fair value exchange
(FVE), which models the fairness for blockchain payments be-
tween multiple parties. More specifically, SAFEPAY systematically
explores the transaction space of a given smart contract and
generates a bounded set of transaction sequences. For each of
the sequence, SAFEPAY reports a UP attack once a violation on
FVE is confirmed. We have further instantiated SAFEPAY for
Ethereum and applied it in real-world smart contracts. In the
empirical evaluation, SAFEPAY managed to identify previously
unreported UP attacks and effectively avoid false alarms com-
pared to analyzers in the literature as well.

Index Terms—Smart contract; Unfair payment; Fair value
exchange

I. INTRODUCTION

Smart contracts were introduced by Ethereum [1] to perform

transparent and traceable transactions on blockchain. While

they are able to enable many complicated business services,

e.g., cryptocurrency, insurance, supplychain etc., they are

prone to various forms of security attacks. Even worse, since

smart contracts are often associated with real-world assets, any

contract vulnerability may lead to catastrophic consequences,

e.g., money loss, financial disorder etc. For example, the

notorious DAO attack resulted in a loss of over 50 million

US dollars. We use a simple contract to briefly explain the

DAO attack, as shown in Figure 1. Specifically, the contract is

written in the Solidity language [2]. The attacker initiated the

attack by sending a transation to call the withdraw function.

According to the service logic, a payment of ether (i.e.,
cryptocurrency on Ethereum) will be made from TokenBox

† Corresponding author.

DAO Contract Attack Contract

attack()

fallback()

a. send a transaction

b. pay and switch to fallback

c. re-enter

Fig. 1: The simplified DAO attack

to the sender of the transaction though a message call with

an execution context switch as well. However, the “fallback”

function in attacker maliciously calls back to DAO repeatedly

to receive more unexpected payment before the balances is

updated at line 5.

Ethereum Payment Attacks. Payment attacks like this were

classified as reentrancy bugs and widely discussed in previous

research [3]. From the practical perspective, reentrancy bugs

in Ethereum can be easily exploited by external attackers. To

detect such security issues, existing approaches have leveraged

program analysis techniques to find specific patterns [3]–[5].

Commonly, such a pattern would check whether a payment

can be reentered according the program context. In addition to

reentrancy, other types of payment attacks on Ethereum were

studied as well. For example, state update after a payment

was used as a pattern to flag potential security problems [4].

A recent work pointed out that nondeterminism due to transac-

tion scheduling can lead to broken payments with manipulated

recipients [6]. Unfortunately, heuristics adopted in existing

analyzers are often imprecise in many practical cases. For

example, if the sanity check at line 2 in Figure 1 is un-

commented, the payment at line 4 becomes secure since only

authorized accounts are allowed to receive the cryptocurrency.

However, existing approaches will still consider the payment

as vulnerable thus generate a false alarm. There might be

other cases where payment attacks are missed, leaving a smart

contract at risk.

Unfair Payment Attack. In this paper, we have revisited

the state-of-art payment analyses and highlighted a new class

of payment attacks on smart contracts, i.e., unfair payment
(UP). As a security abstraction, UP captures a wider range
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Transaction 1: Tokenbox()
Transaction 2: withdraw()
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Case B
Transaction 3: setToken()
Transaction 4: trade()

Fig. 2: Common programming patterns related to UP

of practical threats compared to existing types of attacks. To

better understand UP, we use the illustrative example below

to explain its characteristics. Figure 2 shows an Ethereum

contract called TokenBox, which serves as a trading platform

for cryptocurrency tokens. External accounts are allowed to

trade a specific type of tokens for ether. Specifically, TokenBox

creates two state variables (owner and token), whose values

are permanently stored on blockchain. Besides, the contract

defines four functions and an unnamed fallback function to

process external transactions.

Case A: Free owner for everyone. The function withdraw

(line 8-11) allows the owner of TokenBox to withdraw

funds (ether). However, due to a typo in the function name

(“Tokenbox” instead of “TokenBox”), Tokenbox (line 6-8)

works as a normal public function rather than the contract con-

structor which is called only when the contract is initiated [2].

We further describe a specific case with two transactions

involved where any external attackers (e.g., Alice and Bob)

could make him/herself the owner.

Transaction 1 Alice calls Tokenbox to lift herself up to an

owner (line 6).

Transaction 2 Alice withdraw() a specific amount of ether.

With transaction 2 following 1 in a mined block, an attacker

Alice would be able to bypass the check at line 9 and perform

a one-way payment from the contract to arbitrary accounts,

leading to a UP.

Case B: Costless trade for ether. The function trade (line

25-30) enables a token swap service between TokenBox and

another account (i.e., msg.sender). Specifically, msg.sender

gets ether from TokenBox (line 20) and pays a specific type of

tokens to TokenBox (line 21). Consequently, an attacker Bob

could exploit a UP at line 21 via two steps.

Transaction 3 Bob creates an externally-controlled address

token by calling setToken() (line 15-17).

Transaction 4 Bob recursively enters trade() when the ex-

ecution is given to token at line 21.

In this specific case of UP, there are two payments (line

20 and 21) where a reentrancy could be manifested in one

of them (when transferFrom at line 21 is not defined at the

address of token)*. That way, the contract would be iteratively

paying to msg.sender without receiving anything.

Particularly, both of the payments in Case B are considered

secure against reentrancy attacks as discussed in [3], [4], [7],

because they are neither re-enterable (line 20) nor associated

with ether (line 21). Yet combined together, they lead to an

unfair payment situation. Although UP provides a general view

on security attacks of smart contracts, they are hard to detect.

We summarize the main challenges below.

Challenge 1: General Definition of UP. There is no general

security definitions for unfair payments at the time of writing,

making it difficult to design systematic analyses and tools to

find such payment attacks in practice.

Challenge 2: Transaction Space Exploration. Finding UP

requires analyzing transaction scenarios with possibly compli-

cated control-flow and data-flow, e.g., track a payment recip-

ient across multiple transactions. Such analysis is essentially

hard due to a potentially large transaction space.

Challenge 3: Payment Analysis. A key task of the UP

detection is to understand payment in smart contracts, i.e.,
who is paying to whom. However, given the fact that there

are different types of blockchain payments, a general way to

analyze payments is highly desired.

Our Insight. To address these challenges, we highlighted

a novel analysis framework SAFEPAY to detect UP issues in

smart contracts. The key insight behind is a new security in-

variant, i.e., fair value exchange (FVE), which models the fair-

ness of blockchain payments. Compared to existing pattern-

based heuristics, the proposed invariant is able to identify

hidden vulnerable scenarios without incurring too many false

reports. Based on FVE, a UP is flagged if a violation on FVE

is found. To this end, SAFEPAY systematically explores the

*Fallback function is called if the target function cannot be found [1].
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transaction space of a given smart contract by symbolically

executing it and generating feasible transaction sequences

within a specific bound. Furthermore, we have instantiated

SAFEPAY and applied it in finding UP in Ethereum smart

contracts. In the evaluation, SAFEPAY managed to report

previously unknown payment attacks and avoid a large portion

of false alarms compared to analyzers in the literature.

Contribution. Main contributions of this work are as below.

– We introduced the unfair payment (UP) attack of smart

contracts which is semantically different from existing at-

tacks and further highlighted fair value exchange (FVE) as

a formal security invariant on blockchain payments.

– We have designed the SAFEPAY analysis framework based

on FVE to systematically detect potential UP attacks in

a given smart contract. Compared to existing analyses,

SAFEPAY is able to achieve a better balance between false

negatives and positives.

– We have conducted a large-scale evaluation in Ethereum and

found previously unreported payment attacks.

Paper Organization. The remainder of this paper is or-

ganized as follow. §II introduces background information of

Ethereum, Ethereum Virtual Machine and blockchain transac-

tions. In §III, we present the design of SAFEPAY. §IV shows

the empirical evaluation results on SAFEPAY. §VI discusses

on related works. §VII concludes the whole paper.

II. BACKGROUND

A. Ethereum Assets

Ethereum has two types of assets called ether and token.

ether as Ethereum cryptocurrency is the fundamental asset for

operation of Ethereum, which could be transferred between

accounts through two types of message calls. The first type of

message call implements ether payment with high-level pro-

gramming APIs. There are several built-in APIs in Solidity [2],

e.g., including call.value()(), send(), transfer() etc.
Another type of message call is to invoke a normal external

contract function with payable tag. The payable in Solidity

enables the function to receive ether into the contract from

the caller. The token within Ethereum began when someone

wrote a smart contract to manage balances which are actually

value counters stored in a contract. For example, the balances

in Figure 1 at line 3. It is literally a mapping of addresses

to numbers storing the balance of each address. The token

transfer occurs on the update of local storage (line 5 in

Figure 1) or the update of storage in a token-managed contract

via a message call (line 21 in Figure 2). One of the most

significant contracts for token-management is known as ERC20,

which has emerged as the technical standard used for smart

contracts to design tokens. Specifically, the transferFrom

function in ERC20 takes three arguments, i.e. from, to and

value, which performs the update of balances[from] and

balances[to].

B. Ethereum Virtual Machine

Ethereum Virtual Machine (EVM) runs smart contract

codes to automatically conduct transactions on Ethereum

blockchain [8]–[10]. The Ethereum Virtual Machine has three

locations where it can store data: stack, memory and storage.

The Storage, a persistent memory area for each account,

contains all the contract state variables, for instance, the

state variable owner in line 2 of Figure 2. The Memory

is used to hold temporary values, for instance, the variable

etherAmount in line 19. The Stack is used to hold small

local variables and perform all calculations. EVM is designed

with its own set instructions, which supports arithmetic, bit,

logic and comparison operations. We informally explain 3

types of instruction closely related to UP. The message call

is triggered by CALL instruction. CALL specifics 7 parameters,

i.e., gas value given for the call, callee address, ether value

attached to the call, input offset, input length, output offset

and output length. This callee address can be derived from the

caller address (msg.sender), input data, or storage variables.

SSOTRE/SLOAD stores value and loads value from the storage

respectively. JUMP/JUMPI causes a jumping operation from

current instruction to a specific offset.

III. DESIGN OF SAFEPAY

A. Fair Value Exchange

§I informally explained FVE, now we describe its formal

definition. To begin with, an ether payment operation is for-

mulated as m = 〈g, s, r, v, C〉. Specifically, g is the maximum

amount of gas (i.e., transaction fee in Ethereum) granted for

m. s, r is the address of the sender and recipient, v is the

amount of ether (i.e., Ethereum cryptocurrency) to be paid in

m, C = {c0, c1, · · · , cn} is a set of path conditions to permit

the payment. For example, the payment at line 4 in Figure 1 is

formulated as 〈g∗, DAO, Is, amount, φ〉. g∗ is the amount of gas

given to the transaction on withdraw, the sender of payment

is DAO, Is is represent msg.sender which is the recipient of

payment, amount is value of ether to be paid and φ is an

empty set.

Definition 1 (Ethereum Value). We define the value of

Ethereum in two forms, i.e., ether and token respectively.

While ether is the cryptocurrency on Ethereum, token is often

implemented as a specific storage data.

Definition 2 (Value Transfer). A contract value transfer is

a triple 〈X,Y,→〉, where X and Y are the address of the

payer and payee respectively. →∈ {→e,→t} denotes the

transfer operations on Ethereum values. There are two types

of allowed operations, i.e., direct ether transfer (→e) between

X and Y , and token update (→t) on the blockchain storage.

For example, transfer of an ERC20 from X to Y (denoted as

X →t Y ) amounts to updating the storage data balances

in a token smart contract, e.g., update(balances[X]) and

update(balances[Y]).

Definition 3 (Fair Value Exchange). FVE is designed to model

a transaction scenario t (with single or multiple transactions)
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Fig. 3: The general workflow of the SAFEPAY framework

where each party fairly pays to others. For an address r and a

transaction scenario t = s1s2 · · · sn where si (1 ≤ i ≤ n) is an

operation, e.g., ether payment, update on storage etc., we use

V t
→e

(r) to store a key-value table of ether value transfer to

a blockchain address r in t. For example, 〈s, v〉 ∈ V t
→e

(r)
indicates a payment with v ether from s. Moreover, we

use V t
→t

(r) to denote a set of token transfer from r, e.g.,
x@i ∈ V r

→t
is an update x at program counter i parameterized

by r.
∑k

j=1{vj | 〈sj , vj〉 ∈ V t
→e

(r)} = 0 indicates a zero-

ether transfer to r where k is the length of V t
→e

(r). Similarly,

V t
→t

(r) = φ means no data values are paid from r. For a

blockchain address r, we said that t is an FVE with a specific

bounds k if at least one of the following conditions hold:

i)
∑k

j=1{vj | 〈sj , vj〉 ∈ V t
→e

(r)} �= 0 ↔ V t
→t

(r) �= φ;

ii) t only permits a finite set of addresses to execute, e.g.,
the owner of the contract.

B. Overview

Based on the FVE invariant, we designed the SAFEPAY

framework to automatically detect UP. SAFEPAY takes as

input a smart contract p to be analyzed, either in the form

of Solidity source code or EVM bytecode. The Input Pre-
processor is executed to produce Application Binary Interface

(ABI) file, the assembly code of the contract and a source

map file for further analysis. The CFG Builder constructs the

control flow graph (CFG) Gp for p. This is done via generating

basic blocks and connecting them based on the JUMP and

JUMPI instructions. At this point, Gp may have unconnected

basic blocks for the reason that some of the jump target

addresses cannot be resolved statically. Then, the Symbolic
Transaction Engine performs symbolic execution process on p
with symbolic transaction variables, e.g., sender address, input

data, block information etc.. Gp is iteratively refined in this step

by connecting isolated basic blocks. Furthermore, Symbolic
Transaction Engine tracks the transaction dataflow using a

dynamic taint analysis technique (§III-C) so that we know

how different values (especially storage data) are dependent

on specific taints, e.g., first four bytes of transaction input.

After a program path t in Gp is executed, Metadata Generator
generates transaction metadata for t (§III-D). Generally, the

metadata captures two types of information of t, i.e., path con-

ditions and state updates. Based on all the collected metadata

in Gp, The Core Detector employs an SMT solver to detect

UP in p (§III-E). Particularly, the detection aims at checking

satisfiability of the FVE oracle as defined in §III-A for not

only a single transaction scenario but multiple transactions as

well. If a UP is found, SAFEPAY will produce a JSON report

for UP issues to help developers understand the problem.

C. Symbolic Transaction Engine

Security analysis in SAFEPAY is started from the module

Symbolic Transaction Engine, which is designed to symboli-

cally execute possible transactions on the given contract CFG

and adopted in previous research [3], [11]. The process of

Symbolic Transaction Engine is similar and works as follows.

Firstly, each symbolic path in the CFG is referred to a single

transaction, we symbolize a transaction by using symbolic

values for its data, e.g., transaction input is represented as

the symbol Id. Then, basic blocks from a CFG are itera-

tively fetched for execution on the symbolic input. All the

instructions in basic block are interpreted by the engine to

update contract storage or communicate with other contracts

on blockchain.

Unlike traditional processes, we track the important

dataflow information on the fly and compute the important data

dependency relationship based on it. Specifically, we choose

to use a dynamic taint analysis technique that marks taints
and tracks their flows in the execution [12]. In our context,

such taints include three types of sources {Is, Id, H}. Is and

Id is the sender of a transaction and the transaction input

data, respectively. H represents block variables [1], e.g., block

number, block hash etc. In addition, we use the symbols

I∗s , I∗d and H∗ to represent values that are dependent on

{Is, Id, H} respectively. To track the flow of these taints,

SAFEPAY propagates tainted data in different spaces (i.e.,
stack, memory, storage) when symbolically executing an EVM

instruction. More specifically, the propagation rules are defined

in Table I.

For example, the EVM instruction CALLDATALOAD gets 32

bytes of transaction input data Id(i : i+32) and puts them on

the stack. SAFEPAY extends the structure of stack frames and

uses a special field to represent a taint I∗d from Id. Similarly,

other types of taints will be tracked in this way when SAFEPAY

interprets an instruction. By checking the taint field of a

specific data space, e.g., stack frame, we would be able to

know whether the data is dependent on any taint source. We

use the following example for further explanation.

Example. Figure 4 shows a partial control-flow graph (CFG)

of the withdraw function in Figure 2. We also highlight the

EVM stack to explain the process of taint propagation as

described in Table I. Specifically, the transaction input Id is

marked as a taint and pushed onto the stack as CALLDATALOAD
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TABLE I: Representative taint propagation rules in SAFEPAY

Instrcutions Before After Description

CALLDATALOAD i [〈⊥,⊥〉, · · · ] [〈⊥,⊥〉, 〈Id(i : i+ 32), I∗d 〉, · · · ] Taint from transaction input
CALLER [〈⊥,⊥〉, · · · ] [〈⊥,⊥〉, 〈Is, I∗s 〉, · · · ] Taint is the sender of transaction
CALLDATACOPY m, i, l m[〈⊥,⊥〉, · · · ] m[〈⊥,⊥〉, 〈Id(i : i+ l), I∗d 〉, · · · ] Copy transaction input to memory
SSTORE s, i s[〈⊥,⊥〉, · · · ] s[〈⊥,⊥〉, 〈Id(i : i+ 256), I∗d 〉, · · · ] Writes a value to storage
NUMBER [〈⊥,⊥〉, · · · ] [〈⊥,⊥〉, 〈H.num,H∗〉 · · · ] Taint form block number
BLOCKHASH H.num [〈⊥,⊥〉, · · · ] [〈⊥,⊥〉, 〈Hash(H.num), H∗〉 · · · ] Taint form the hash of block number
ADD v1 v2 [〈⊥,⊥〉, 〈v1, I∗d 〉, 〈v2〉 · · · ] [〈⊥,⊥〉, 〈v1 + v2, I∗d 〉, · · · ] Taint propagation through ADD
EQ v1 v2 [〈⊥,⊥〉, 〈v1, I∗d 〉, 〈v2〉 · · · ] [〈⊥,⊥〉, 〈computed, I∗d 〉, · · · ] Taint propagation through EQ

Fig. 4: Partial control-flow graph of the withdraw

is symbolically executed (top). When an EQ instruction is

executed on the top two stack elements, i.e., Id and 0x00, the

symbolic result computed is tainted as well since its value

is dependent on Id (middle). As the symbolic transaction

proceeds to the CALL instruction (the payment at line 10 in

Figure 2), a tainted Id is the top third stack element (bottom).

That said, the Id is used as a parameter of the payment

instruction CALL. In this manner, we are able to track the data

flow dependency through a symbolic transaction according to

the taint propagation rules defined in Table I.

D. Metadata Generator

In the symbolic execution process of SAFEPAY, a Meta-
data Generator is repeatedly invoked to produce transaction

metadata for security analysis. As described in §III-B, each

transaction tx in this process is modeled via transaction
metadata, i.e., path conditions of tx and state updates in tx.

More formally, a metadata Stx of tx is defined as a tuple

Stx := 〈Utx, Ptx〉, where Utx is a set of token payment (i.e.,
updates on local storage or external storage), and Ptx is a set

of ether payment (i.e., message call [1] with ether attached)

in t. For a local storage update ul : 〈v, l, {c0, · · · , ck}〉 ∈ Utx,

v and l denote the new value v of the storage at location l.
{c0, · · · , ck} stands for a set of conditions to reach ul. And

the external storage update via the message call is defined

as ue : 〈t,m, {c0, · · · , ck}〉 ∈ Utx, where t is the address of

external contract, m is a set of address type variables that may

involve external storage updates which captured by analyzing

the input data of the message call. Moreover, for an ether
payment p : 〈g, s, r, v, C〉@i ∈ Ptx, it is encoded as described

in §III-A with a program counter i. In general, Metadata
Generator offers interfaces to Symbolic Transaction Engine

to generate transaction metadata. In this sense, the generation

of metadata is decoupled from symbolic execution such that

a new type of metadata can be flexibly extended. Once a

transaction in CFG is processed, the corresponding metadata is

produced and sent to the Core Detector to search for potential

unfair payments.

Example. Consider function withdraw in Figure 3. The

transaction of it only involves an ether payment in line 10. So

the metadata cloud be formulated as Sw := 〈φ, Pw〉, where Pw

only contain a payment pw : 〈g∗, TokenBox, Is, amount, C〉.
And the condition of payment C : {c0 · · · , owner ==
Is, · · · ck} restricts that msg.sender (Is) must be the owner.

E. Core Detector

The detection of UP is based on the collection of trans-

action metadata S = {S1, S2, · · · , Sn} generated during the

process of symbolic execution. According to the definition in

§III-A, SAFEPAY detects potential UP issues via searching for

violations on the FVE oracle. More specifically, the detection

Algorithm 1: Detection of UP issues

Input : S = {S1, S2, · · · , Sn} is a set of transaction metadata.
k is the bound of transaction scenarios.

Output: X = 〈PF , TF 〉 is the set of detected UP issues.

1 X ← 〈φ, φ〉

// Phases 1: Genrate a set of transaction sequences
2 for St ← 〈Ut, Pt〉 ∈ S do
3 if Pt = φ then
4 continue
5 for p ∈ Pt do
6 T ← T ∪ genTX(p, S, k)

// Phases 2: Detect UP in transaction sequences T
7 for Ti ∈ T do
8 if checkF(Ti, STi

)! = φ then
9 TF ← TF ∪ Ti

10 PF ← PF ∪ checkF(Ti, STi
)

11 return X

works in a two-phase manner. In the first phase, SAFEPAY

automatically selects all payments and generates a set of

transaction sequences T , with a specific bound k. In the second

phase, for each transaction sequence Ti = tx1, tx2, . . . , txn in

T , SAFEPAY checks whether Ti holds a UP. Lastly, the Core
Detector generates the UP information in a JSON report.
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Algorithm 2 describes the workflow of genTX, i.e., a process

to generate candidate transaction sequences which may trigger

UP. Firstly, we push the transaction of payment p (txp)

in transaction sequences Tp as the start element (line 1-2).

Secondly, given a bound k, we iteratively generate transaction

sequences with no more than k transactions (line 3-7) to avoid

transaction space exploration. Specifically, for generating a

new set of transaction sequences with m transactions (Tm),

we traverse the first element tx1 in transaction sequences

Tm−1 and insert its related transactions txSi
in front of the

transaction sequences (line 5-7). The txSi
is selected by a

function checkI which is a boolean function utilizing SMT

solver to check whether the given data update set Ui in Si

affect the condition or state of tx1 (line 6).

Algorithm 2: The genTX procedure

Input : p = 〈g, s, r, v, C〉 is a payment operation at x.
S = {S1, S2, · · · , Sn} is a set of transaction metadata.
k is a specific bound to limit the number of transaction.

Output: Tp a set of transaction scenarios for the payment p.

1 Tp ← {{txp}}
2 T1 ← Tp

3 for m in range(2, k) do
4 for Si ← 〈Ui, Pi〉 ∈ S do
5 for tp = {tx1, tx2 . . . , txm−1} ∈ Tm−1 do
6 if checkI(Ui, tx1) then
7 Tm ← Tm ∪ {txSi

, tx1, tx2, . . . , txm−1}

8 Tp ← Tp ∪ Tm

9 return V

Algorithm 3: The checkF procedure

Input : T = {tx1, tx2, · · · , txn} is the transaction scenario with
at least one payment.
ST = {S1, S2, · · · , Sn} the set of transaction metadata.

Output: P is the UP 〈· · · pt, pn, · · · 〉.

1 P ← φ
2 V[→e]← 0
3 V[→t]← φ
4 for 〈pt = 〈gt, rt, vt, Ct〉, St = 〈Ut, Pt〉〉 ∈ Sn do
5 for s ∈ Sn do
6 if s = pt then
7 break
8 if s ∈ Ut & rt � s then
9 if rt � ls || (checkR(rs, ST ) & rt � ms) then

10 V[→t] ∪ {s}
11 if s = 〈gs, rs, vs, Cs〉 ∈ Pt & rt = rs then
12 V[→e] = V[→e] + vs

13 if V[→e] > Iv & V[→t] = φ then
14 if checkR(rt, ST ) then
15 P ← P ∪ pt

16 return P

Lastly, Algorithm 3 describes the checkF procedure for

detecting violations on FVE. Specifically, for a set of trans-

action sequences T generated in previous procedures and

their metadata ST , we analyze the value exchange details. To

this end, all the operations in metadata are explored one by

one (line 4-15). For a token update operation as defined in

Definition 2, we capture the operation that affects the recipient

rt value of pt (line 8-10). Specifically, if the operation is a

update on local storage ul : 〈v, l, {c0, · · · , ck} and the storage

location l related to rt, we add it to V[→t] (line 9). Otherwise,

if the operation is a update on external storage via message call

ue : 〈rs,ms, {c0, · · · , ck}〉, two conditions should be checked

(line 9): The first condition, check whether the address rs can

be manipulated via a boolean function checkR. And checkR

utilizes the SMT solver to check whether the address rs is

dependent on taint sources {Is, Id, H} in the given transaction

sequence. The second condition, check whether the recipient

rt is a part of input data m. If both conditions satisfied, this

operation is regarded as a token transfer to the recipient rt
, and we push it into V[→t] (line 9-10). Moreover, for ether

transfer operations, we check whether their receivers are the

recipient of pt. If so, the amount of ether attached to the

transfer is accumulated (line 11-12). Based on FVE, we firstly

check if the amount of ether to transfer out of the contract is

larger than the amount of ether to be transferred in and there

is no token transfer (line 13), then we check whether it can be

manipulated by arbitrary address using the function checkR

(line 14). The payment pt that passes the above condition will

be added to the UP set P (line 15).

IV. EVALUATION

Implementation. We have instantiated SAFEPAY as a de-

tector for Ethereum unfair payments. Specifically, we used

the py-solc [13] to compile smart contracts with different

versions. Z3 [14] 4.6.0 was used as the SMT solver to check

the feasibility of potential UP issues. In principle, SAFEPAY

is general and not specific to the current implementation. That

said, any EVM based symbolic executor and SMT solver

would fit in this setting.

Experiment setup. Our experiments were performed on a

Linux machine with i9-9900K CPU@3.60GHz and 64GB of

RAM with 16 MB SmartCache. For Z3, we set the timeout to

be one second per request. The global timeout for the symbolic

execution was set to 300 seconds for each contract.

Dataset. Two types of datasets were used in our evaluation.

Dataset-B contains both buggy and fixed versions of smart

contracts related to payment attacks from two se-

curity benchmarks [15], [16].

Dataset-L includes a large set of real-world smart contracts

from Etherscan [17]. 46,327 were used in total.

A. Comparison with Existing Analyzers

We evaluated the effectiveness of SAFEPAY via compar-

isons with state-of-art analyzers on two types of datasets

as aforementioned. The comparison tools included Oyente
(v0.2.7) [3], Mythril (v0.21.15) [18] and Securify (2019-05-

01) [4]. Since existing analyzers provided no direct support
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TABLE II: UP detection result on Dataset-B. According to the benchmark contract, �represents a true positive or true negative

and � represents a false positive or false negative. ∗ indicates a bug-free contract.

Contract Buggy Line SAFEPAY Securify Mythril Oyente
simple_dao.sol 17 � � � �
DAO.sol 911 � � � �
SpankChain_Payment.sol 422 � � � �
modifier_reentrancy.sol 14 � � � �
simple_dao_fixed.sol ∗ � � � �
modifier_reentrancy_fixed.sol ∗ � � � �

TABLE III: Detection results of unfair payment attacks on Dataset-L. For Securify and Mythril, two kinds of analysis were

considered since they both targeted on payment-related issues.

Detector Analysis #Reported Attacks

#Unfair #Fair #Total False Positive (%)

SAFEPAY Unfair Payment 510 80 590 13.5%

Securify DAO in contract 376 6,148 6,524 94.2%
UnrestrictedEtherFlow in contract 33 584 617 94.6%

Mythril External call to user-supplied address 53 1,099 1,152 95.3%
Unprotected Ether Withdrawal 141 64 205 31.2%

Oyente Reentrancy Vulnerability 31 87 118 73.7%

for UP, we used their results of payment-related analysis

instead. Specifically, in the case of Oyente, we counted the

number of Reentrancy Vulnerability. For Mythril, External call
to user-supplied address and Unprotected Ether Withdrawal
were considered. In terms of Securify, DAO in contract and

UnrestrictedEtherFlow in contract were included, respectively.

The comparison was designed not only to validate whether

UP was able to cover more practical payment attacks than

other heuristics, but to help develop in-depth understanding

on blockchain payment security threats as well.

The results on Dataset-B is shown in Table II. For the

four vulnerable contracts, namely simple_dao.sol, DAO.sol,

SpankChain.sol and modifier_reentrancy.sol, SAFEPAY man-

aged to detect three of them while other analyzers missed two

or three potential attacks. Particularly, the SpankChain.sol con-

tract which suffered from an attack with $38,000 loss escaped

from all the detection except for SAFEPAY. In the case of two

fixed versions of vulnerable contracts, i.e., simple_dao.sol and

modifier_reentrancy.sol, SAFEPAY generated no false alarms

as Securify and Oyente. Unfortunately, Mythril considered

both contracts as vulnerable. In sum, SAFEPAY produced the

least number of false negatives and positives in this small-sized

dataset among four analyzers considered.

Furthermore, the empirical results of a large-scale evaluation

on Dataset-L is shown in Table III. For attacks reported by

SAFEPAY, we manually validated them by checking whether

FVE was satisfied in smart contracts. Then, we counted the

number of unfair contracts (true positives) and fair ones (false

positives), respectively. As shown in Table III, SAFEPAY

reported 590 issues in the dataset, which was four times

more than Oyente. However, this number was relatively

small compared to both Securify and Mythril which reported

7,141 and 1,357 potential payment attacks in total. Although

these two analyzers produced a big report, many cases from

their reports were identified as false alarms. While the ratios

of false positives for other three analyzers were over 70%

(The analysis of Unprotected Ether Withdrawal in Mythril
generated a comparatively small number of false positives.),

the number for SAFEPAY was as low as 13.5%. That said,

SAFEPAY is more semantically accurate w.r.t. unfair payments

on blockchain. More specifically, instead of looking for certain

code patterns on smart contract payments, the analysis in

SAFEPAY tracks payment dependencies in a given contract

and further determines whether fairness is guaranteed in all

possible transaction scenarios. This way, SAFEPAY is able to

avoid early reports on potential unfair payments which later

turn out to be actually fair. On the other hand, there were a

group of cases where the detection required analyzing multiple

payments rather than a single one. Our evaluation observed

misses on this type of attacks for existing analyzers. We will

explain both situations in §V. All the evaluation results will

be released six months after publication for security reasons.

B. Validation

To validate the UP problems reported by SAFEPAY, we

set up reproducible attacks on Ethereum network and sent

attacking transactions to vulnerable contracts. Specifically, we

used the Metamask extension† to connect the browser with

Ethereum. Then, we deployed contracts and sent transactions

via Remix‡. For ethical reasons, all the validations were

performed on the Ropsten testnet. Next, we describe the

process of a specific contract.

†https://metamask.io/
‡http://remix.ethereum.org
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1 contract Congress {
2 Proposal[] public proposals;
3 mapping (address => uint) public memberId;
4 address owner;
5 �function ReconOwned() public {
6 owner = msg.sender;
7 }
8 modifier onlyOwner {
9 require(msg.sender==Owner);
10 _;
11 }
12 �function addMember(address target) onlyOwner {...}
13 �function newProposal(...) onlyMembers returns (

ProposalID) {
14 proposals.push(...)
15 }
16 �function executeProposal(uint p) public {
17 assert(proposals[p].call.value(p.amount)();
18 }
19 }

Fig. 5: A vulnerable smart contract with UP

Attacker

1.Congree.ReconOwned(this)

2.Congree.addMember(this)

3.Congree.newProposal(this,…)

return proposalID

4.Congree.execute

Call fallback function Congree.execute

……Re-enter

Congress Attacker Congress

Fig. 6: Attack transaction scenario of Figure 5

The contract in Figure 5 manifests an unfair payment at

line 17 since proposals[p] is externally controllable. We

simulated a UP attack on the Ropsten testnet as demonstrated

in Figure 6. The attack transaction sequences are: (1) An

attacker calls ReconOwned � updates owner to him/herself.

(2) An attacker invokes addMember� to include him/herself

in the collection of members. This can work because the

attacker is considered as an owner. (3) An attacker calls

newProposal� to add him/herself into the proposals and

get a proposalID from Congress. (4) An attacker uses the

proposalID to execute executeProposal� and iteratively

send ether to him/herself via the payment at line 17.

The validation transaction has been confirmed on Ropsten at

0xcb3198c3dc8f6fb0487aba5ca8fca6364e0db9bcbd004cb632

f1eed1cb705faf.

V. DISCUSSION

In this section, we present an explanation on representative

cases and discuss on false positives/negatives of SAFEPAY.

TABLE IV: Representative cases. re and rt denote recipients

of ether and token payment, respectively.

Type Contract

Fixed re Reservation

Arbitrary re, Fixed rt AkilosToken

Arbitrary re and rt

IKyberNetworkProxy
SpankChain_Payment
ShortOrder

A. Representative Cases

We highlight three representative types of contracts which

we believe are important for designing an unfair payment

analyzer, as in Table IV. Particularly, we use re and rt to

denote recipients of ether and token payment, respectively.

1 // 0xaaa6c933006e4d4b9a305015a69eed3d177fd355
2 contract Investment{
3 Crowdsale public ico = Crowdsale(0x0807....95b72a);
4 function buyTokens(uint _from, uint _to) {
5 ico.invest.value(amount)();
6 delete balanceOf[investors[i]]; }

Fig. 7: Fixed re payment.

Fixed re. Consider the ether payment at line 5 of Figure 7,

the function buyTokens allows an ether payment to a fixed

address ico. Since the recipient is set at the time of contract

creation, the payment is a fair one. Existing tools could be

misled in this case due to the state update (line 6) following

the payment.

1 //0x1da73fc09ea07781482994036a0eecc7e6952dfb
2 contract TydoIco {
3 constructor(address _coinToken, ....){
4 token = _coinToken; }
5 function refund(ISetToken set, ...) public {
6 msg.sender.transfer(weiAmount);
7 token.transfer(owner, balances[msg.sender]);
8 .... }

Fig. 8: Arbitrary re and fixed rt pattern.

Arbitrary re, Fixed rt. Figure 8 shows another fair payment

pattern in function refund. Specifically, two payments are

created at line 6 and 7. While the payment at line 6 transfers

ether to a given address, the payment at line 7 sends token to a

predefined recipient token. Based on FVE, the two payments

are fair in SAFEPAY. However, existing analyzers report line

6 as a payment attack since the recipient msg.sender is

dependent on transaction senders, leading to a false alarm.

Arbitrary re and rt. Another representative case is a con-

tract with multiple ether and token payments whose recipients

are both arbitrary, as shown in Figure 9. Specifically, line

6 transfers ether to msg.sender, then a token payment is

performed to token at line 8. In this case, a UP is triggered
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1 //0xf91546835f756da0c10cfa0cda95b15577b84aa7
2 contract SetBuyer {
3

4 function buy(ISetToken set, ...) public {
5 if (address(this).balance > 0) {
6 msg.sender.transfer(address(this).balance);
7 }
8 require(token.transfer(msg.sender, ...); }

Fig. 9: Arbitrary re and arbitrary rt pattern.

when the token blocks the token payment and repeatedly

steals ether from the contract. In our evaluation, state-of-art

analyzers considered the ether payment at line 6 as a potential

attack because it pointed to an arbitrary recipient msg.sender.

For the token payment at line 8, existing analyzers ignored

it since the payments is associated with no ether and state

updates followed. From the view of SAFEPAY, the UP in this

contract is not equivalent to an unrestricted ether flow at line 6.

The reason is the payment at line 6 is vulnerable only when the

threat at line 8 is considered at the same time. In another word,

given a secure token payment at line 8, line 6 becomes safe

accordingly. Therefore, existing analyzers missed this unfair

payment in the evaluation.

B. False Positives and Negatives of SAFEPAY

SAFEPAY also has some limitations. While these limitations

are not only challenging for SAFEPAY, but for all state-of-

the-art analysis tools. As shown in Table V, we summarized

several classes of common patterns that we encountered. Such

knowledge can greatly help the future work of researchers in

this area.

TABLE V: Smart contracts expose SAFEPAY limitations

Type Contract

Hash-based Sanity Check CompanyFundsWallet

Gambling Contract casinoRoyale

Honeypot Contract PinCodeMoneyStorage

Misunderstanding on Payment AkilosIco

1 // 0x6e6f819299e7809ce744f37fae9f84fe38d95f1c
2 contract CompanyFundsWallet{
3 bytes32 keyHash;
4

5 function withdraw(string key) public payable {
6 if(keyHash == keccak256(abi.encodePacked(key))) {
7 msg.sender.transfer(address(this).balance); }

Fig. 10: Hash-based Sanity Check

Pattern 1: Hash-based Sanity Check. Some contracts use a

hash function to check the authority of the caller, which cannot

be captured by SAFEPAY and cause some false positives.

Figure 10 shows a sample contract of this pattern. In function

withdraw, it determines whether the user is an authorized user

by checking whether the hash of the key is equal to the storage

keyHash. It is difficult to identify such specific conditions for

constraining the caller from a set of path conditions.

1 // 0x919b5284182c676d02a3d657379c4f6e9e65eefd
2 contract casinoRoyale {
3

4 function flipCoin() public payable {
5 require(msg.value > 1500);
6 uint value = RandomGen.random(10,uint8(msg.value));
7 if (value > 55) {
8 msg.sender.transfer(msg.value * 2); }

Fig. 11: Gambling Contract

Pattern 2: Gambling Contract. There are some special

smart contracts, e.g. gambling contracts, their functions natu-

rally do not satisfy the FVE. Figure 11 shows a famous gam-

bling contract named casinoRoyale. The player can invoke

flipcoin to play the game. The msg.value is used to generate

the random number value in line 6. If the check of value in

line 7 passes, the player will receive a double value reward in

line 8. The only way to avoid false positives caused by such

contracts is through analyzing the fairness in conjunction with

the contract function.

1 // 0x9efc7a38552e63534a8e9b9558adabd73297f91d
2 contract PinCodeMoneyStorage {
3 address private Owner = msg.sender;
4 uint public SecretNumber = 95;
5

6 function Withdraw() public payable{
7 require(msg.sender == Owner);
8 Owner.transfer(this.balance); }
9 function Guess(uint n) public payable {
10 if(msg.value >= this.balance) {
11 if(n*n/2+7 == SecretNumber ) {
12 msg.sender.transfer(this.balance+msg.value);

Fig. 12: Honeypot Contract

Pattern 3: Honeypot Contract. During our empirical anal-

ysis, we noticed a few cases flagged by SAFEPAY are hon-

eypots, which means attackers might lose the ether if they

exploit them. Figure 12 shows an example contract named

PinCodeMoneyStorage. The attacker can easily calculate the

n that satisfies the condition in line 11 and then get all ether by

the payment in line 12, which clearly does not satisfied FVE.

But the contract takes advantage of the fact that this.balance

could be easily modified, such as invoking withdraw. As a

result, the condition in line 10 will always fail and the transfer

will never occur. Since the traps of smart contract honeypots

vary in sophistication, it is hard to define heuristics to expose

them from UP.

Pattern 4: Misunderstanding on Payment. Due to the

specific identification of token payment, some UP are missed

by SAFEPAY. Figure 13 shows a sample contract which

holds a missed UP. Line 6 performs an ether payment to an

arbitrary caller, and the following external call in line 7 will

be considered as a token transfer since the token is a fixed
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1 // 0x0b1e9e95f0655716ee00ae455caf9ba01364491a
2 contract AkilosIco{
3 token = new AkilosToken();
4 function participate(address participant,uint value){
5 uint256 tokenCount = safeMul(value, exchangeRate);
6 msg.sender.transfer(value);
7 token.mint(msg.sender, tokenCount); }
8

9 contract AkilosToken{
10 function mint(address _to, uint value) onlyMinter{
11 balances[_to] = safeAdd(balances[_to], _value); }}

Fig. 13: Misunderstanding on Payment

address and the recipient of payment in line 6 is a part of

input data. When we check the code of mint (line 10-11), we

will find that the function will increase token of msg.sender

instead of reducing. Hence, the payment in line 6 is a UP.

VI. RELATED WORKS

In recent years, the security of smart contracts has been a

hot research topic. There has been a lot of research regarding

smart contract vulnerabilities and common security models

[19], [20]. To audit smart contracts, researchers developed

statistic analyzers using symbolic execution [3], [4], [7], [18],

[21], [22]. Oyente, Mythril focus on finding an execution

path that satisfies a given property, which utilizes Z3 SMT

solver [14] to decide the satisfiability [3], [18]. Securify is

based on abstract interpretation and encode the smart contract

into Datalog formulas [4]. In a dynamic analysis of smart

contract, ContractFuzzer is proposed a novel fuzzer to analyze

smart contracts with testing oracles defined for several known

vulnerabilities [5], [23]. MuSC explored the potential of

applying mutation testing into smart contracts [24].

VII. CONCLUSION

In this paper, we highlighted a new security oracle called

UP for Ethereum smart contracts and a systematic frame-

work SAFEPAY to detect UP issues as well. Specifically,

the oracle is more general than existing ones in terms of

modeling attack scenarios. Our approach leverages symbolic

execution to generate both transaction dataflow and metadata

of a given contract. Furthermore, SAFEPAY infers potential

UP via checking the satisfiability of oracle violations. We

have instantiated SAFEPAY and applied it in analyzing real-

world Ethereum contracts. SAFEPAY managed to identify more

vulnerable contracts with real exploits than analyzers in the

literature. Extensions of SAFEPAY for more security problems

are considered as future work.

VIII. ACKNOWLEDGEMENT

Han Liu is the corresponding author. Lei Wang is supported

by National Key Research and Development Program of China

(No.2019YFB2101601).

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[2] Ethereum, “Solidity — solidity 0.4.19 documentation,” 2017. [Online].
Available: https://solidity.readthedocs.io/en/develop/

[3] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[4] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 67–82.

[5] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 65–68.

[6] S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic payment
bugs in ethereum smart contracts,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. OOPSLA, pp. 1–29, 2019.

[7] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” NDSS, 2018.

[8] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu, “Kevm: A complete semantics of the ethereum virtual
machine,” Tech. Rep., 2017.

[9] Y. Hirai, “Defining the ethereum virtual machine for interactive theorem
provers,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 520–535.

[10] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial
internet of things,” Journal of Software Engineering and Applications,
vol. 9, no. 10, p. 533, 2016.

[11] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” arXiv preprint
arXiv:1802.06038, 2018.

[12] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[13] Ethereum, “py-solc,” https://github.com/ethereum/py-solc.
[14] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[15] Mythril, “Smart contract weakness classification registry,” https://github.
com/SmartContractSecurity/SWC-registry.

[16] trailofbits, “Smart contract weakness classification registry,” https://
github.com/crytic/not-so-smart-contracts.

[17] E. Team, “Etherscan: The ethereum block explorer,” 2017.
[18] C. Diligence, “Mythril(2018),” https://github.com/ConsenSys/

mythril-classic.
[19] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step

by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 79–94.

[20] M. Bartoletti and L. Pompianu, “An empirical analysis of smart con-
tracts: platforms, applications, and design patterns,” in International
Conference on Financial Cryptography and Data Security. Springer,
2017, pp. 494–509.

[21] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 814–819.

[22] H. Liu, Z. Yang, Y. Jiang, W. Zhao, and J. Sun, “Enabling clone detection
for ethereum via smart contract birthmarks,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE,
2019, pp. 105–115.

[23] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[24] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, “Musc: A tool for
mutation testing of ethereum smart contract,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 1198–1201.

70

Authorized licensed use limited to: Peking University. Downloaded on November 24,2020 at 01:52:11 UTC from IEEE Xplore.  Restrictions apply. 


