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Abstract. We show how a group of independent agents with carefully
specified notions of progress and synchronisation can proceed in a model
where consensus does not require unanimity and represents an emergent
group behaviour. These agents will typically cooperate to implement a
decentralised system such as a blockchain. Thus a model state machine
can be compiled into replicated asynchronous agents that implement it
in such a way as to overcome Byzantine faults up to a certain assumed
level.
Our abstraction achieves precise reliability and allows us to create schemes
in which multiple consensus machines interact that can be modelled in
process algebras like CSP and verified by model checking. This paper
concentrates on the CSP analysis of a protocol showing how one dis-
tributed consensus machine can take over control from another without
creating ambiguity over the outcome.

Keywords: Consensus · State machine · Byzantine · Process algebra ·
Formal methods.

1 Introduction

In this and related papers we show how to navigate the giant conceptual leap
from a simple trusted state machine acting dependably on the collective data of
a distributed system, which we term the ideal, to an implementation of the same
functionality on a collection of decentralised agents that are neither universally
trustworthy nor universally trusting. Instead we create a model of this trust
and dependability which is frequently stochastic. We show how to create rules
which, for suitable models, deliver a decentralised implementation of the desired
behaviour and allow the creation of new and efficient consensus protocols.

The core example of this is a public blockchain. In this we understand what
high level procedure is meant to be followed: the blockchain selects successive
agents to create blocks; it verifies the ones put forward and either accepts or
rejects them. The rules for these procedures are laid down and universally recog-
nised. It is quite normal to explain such actions by the chain as being the work
of a single god-like agent, and frankly such understanding provides the best high
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level and relatively elementary explanation of what is meant to be going on.
However the behaviour has to emerge from the actions of many agents purport-
ing to act together, when there may be some among them who deliberately seek
to undermine this process.

As well as creating a theory of consensus, we use it to understand and justify
a new model of block approval/verification for blockchains. We term this the
picketing model, which we summarise informally here:

1. We note that it is unfortunate if a consensus model builds in the assumption
that it has to counteract a large proportion of active attackers all the time,
when mostly the bad agents — the corruptible ones — can be expected to
follow the rules because of incentive structures. This means that a lot of
machinery needs to be present to counteract attacks that are usually not
there.

2. Our proposal to get around this is to use a primary decision mechanism
that will demonstrably come to the right decisions if most of the bad agents
make the same choices as the good ones, but which may fail to come to any
decision if they do not. We ensure that bad agents can never force a bad
decision.

3. This is backed up by a secondary decision-making mechanism that is less
efficient but cannot be blocked by the bad agents under standard assump-
tions. This takes over if the primary mechanism apparently fails to make a
decision.

Conceptually this seems relatively clear. The problems come from getting it
to work securely in the decentralised world of agents, some of whom are malign.
We identify the following issues:

A. Creating a safe but not necessarily complete model of consensus. This means
identifying a set of pickets (i.e. block-producing agents) upon whom all agree.
Moreover, it means coming up with a model of when there is sufficient con-
sensus among these so that all will agree when this is demonstrated, and
similarly agree that no commitment exists without this.

B. Here, by safe we mean that there cannot be consensus without this being
agreed by sufficient agents — generally good agents. We need a universally
agreed definition of this so consensus is equally recognised by all. Similarly it
is impossible for two conflicting consensuses to arise about the same question.

C. Ensuring that enough good agents exist for progress to be near-certain unless
bad ones misbehave in an obvious way.

D. Understanding how bad agents can prevent progress by preventing consen-
sus. This can arise from them certifying wrong answers or failing to give any
answer at all.

E. How to build a safe and complete back-up mechanism. We would expect
the completeness to come from involving many more agents in the process
so that it is effectively impossible for there to be enough bad ones to block
progress. This might well just be Byzantine agreement over the complete
mining population. We will find that the combinatorics of building a safe
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and complete system are a natural — and more demanding — extension of
building a safe one.

F. As soon as there are more than one decision making mechanism in a decen-
tralised and asynchronous environment, we need to prove that they cannot
make inconsistent decisions. For example, if they are given the task of de-
ciding on the next block in combination and expected to come up with a
decision, we need to show that at least one of them does and if they both do
they agree. For otherwise this might lead to a fork.

2 Background

2.1 Blockchains

Blockchains were initially proposed as a decentralised way to implement digital
currencies and prevent double spending, i.e. the possibility that the owner of a
digital currency could spend it more than once [20]. However, they have evolved
into generic decentralised auditing systems that do much more than just prevent
double spending. For instance, with the advent of smart contracts — programs
that are executed in the context of a blockchain — a developer can define by
means of a program how transactions addressed to that smart contract are to
be processed [5].

A blockchain is a decentralised stateful transaction processing system, some-
times referred to also as a distributed ledger. It receives transactions from its
stakeholders, decides on which of those are valid, and performs alterations to its
state that record the effects of these transactions. As a decentralised system, mul-
tiple agents collaborate to implement this behaviour. In this context, the term
blockchain refers not just to the state comprising the transactions and blocks,
but includes the entire system including the agents operating on the state.

A blockchain orders and stores valid transactions into blocks which are them-
selves ordered, giving rise, ultimately, to a chain of blocks representing the his-
tory of the blockchain. In practice, however, during its operation, a blockchain
— or rather its agents — manipulate a block tree.

A block tree is a directed, finite and acyclic rooted tree defined by a pair
(V,E) where V is a set of blocks and E is a set of backward links — the root
(genesis block) is the only block without an outgoing link. The backward links
are implemented by embedding the cryptographic hash of its predecessor block
in the header of each block. A backward link exists from block B2 to block B1 iff
hash pointer(B2) = hash(B1), where hash pointer() extracts the embedded
backward link from a block, and hash() is the cryptographic hash function used
by the blockchain. This results in a unique path from every block back to the
root (B0), because (by the properties of the hash function) it is infeasible to
construct a false predecessor block with the same hash.

However, because it is possible to construct many different valid successor
blocks to any existing block, it is necessary for the blockchain’s agents to have
a mechanism to determine unambiguously which is the “true” successor to any
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given block. It is an aspect of the design of a reliable consensus mechanism to
achieve this that is the motivation for this paper.

2.2 CSP and its semantics

Note: In this paper we use the machine-readable ascii version of CSP syntax
(CSPM ) throughout, as opposed to the typeset blackboard syntax and symbols.

CSP is based on instantaneous actions handshaken between a process and
its environment, whether that environment consists of processes it is interacting
with or some notional external observer. It enables the modelling and analysis of
patterns of interaction. The books [12, 24, 27] all provide thorough introductions
to CSP. The main constructs that we will be using in this paper are set out
below.

– The processes STOP, SKIP and DIV respectively do nothing, terminate im-
mediately with the signal ✓ and diverge by repeating the internal action τ .
RUN(A) and CHAOS(A) can each perform any sequence of events from A, but
while RUN(A) always offers the environment every member of A, CHAOS(A)
can nondeterministically choose to offer just those members of A it selects,
including none at all.

– a -> P prefixes P with the single communication a which belongs to the
set Σ of normal visible communications. Similarly [] x : A @ x -> P(x)
(replicated external choice) offers a choice over A and then behaves accord-
ingly.

– CSP has several choice operators. P [] Q and P |~| Q respectively offer the
environment the first visible events of P and Q, and make an internal decision
via τ actions whether to behave like P or Q.
The asymmetric choice operator P [> Q offers the initial visible choices of
P until it performs a τ action and opts to behave like Q. In the cases of P
[] Q and P [> Q, the subsequent behaviour depends on what initial action
occurs.

– P \ X (hiding) behaves like P except that all actions in X become (internal
and invisible) τs.

– P [[ R ]] (renaming) behaves like P except that whenever P performs an
action a, the renamed process must perform some b that is related to a under
the relation R. R is specified using the CSPM mapping syntax.

– P [| A |] Q is a parallel operator under which P and Q act independently
except that they have to agree (i.e. synchronise or handshake) on all com-
munications in A. A number of other parallel operators can be defined in
terms of this, including P ||| Q = P [||] Q in which no synchronisation
happens at all.

There are also other operators such as P ; Q (sequential composition), P /\ Q
(interrupt) and P [| A |> Q (throwing an exception) for passing control from
one process P to a second one. P /\ Q hands over control when Q performs a
visible action, so that the handover if instigated by Q. In P [| A |> Q it is
instigated by P performing an exception event a from the set A.
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It is always asserted that the meaning, or semantics, of a CSP process is
the pattern of externally visible communication it exhibits. As shown in [24,
27], CSP has several styles of semantics, that can be shown to be appropriately
consistent with one another. In this paper, we are concerned with behavioural
semantics: CSP processes are identified with sets of observations that might be
made from the outside. The best known behavioural models of CSP are based
on the following types of observation: Traces are sequences of visible communi-
cations a process can perform. Failures are combinations (s,X) of a finite trace
s and a set of actions that the process can refuse in a stable state reachable on
s. A state is stable if it cannot perform τ . Divergences are traces after which
the process can perform an infinite uninterrupted sequence of τ actions, in other
words diverge. The models are then:

– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– FD in which it is modelled by its sets of failures and divergences, both ex-

tended by all extensions of divergences: it is divergence strict.

2.3 FDR

FDR[1, 24, 27, 8] is a refinement checker between finite-state processes defined in
CSP. First created in the early 1990’s it has been regularly updated since. The
latest version is FDR4.4

It uses CSPM , the machine-readable version of CSP, which has been ex-
tended with a functional programming language related to Haskell. This enables
the user to define complex networks and data operations succinctly, and to create
functions that, given abstract representations of structures or systems, can au-
tomatically generate CSP networks to implement and check them. Perhaps the
best-known example of this is the Security Protocol checker Casper [19] which,
given an abstract representation of a cryptographic protocol and some security
objectives for it, generates a CSP script which checks to see if the objectives are
true. In a similar vein compilers have been written from other notations to CSP
such as Statecharts [11] and shared-variable programs (see Chapters 18 and 19
of [27]). A survey of the most important practical applications of FDR can be
found in [3].

FDR is most often used to check refinements of the form Spec [X= Impl,
where Spec is a process representing a specification in one of the standard CSP
models X, usually traces, stable failures or failures-divergences. Impl is a CSP
representation of the system being checked. To check whether a process Impl
satisfies a particular property, Spec is constructed to represent the most general
process (in the relevant model) exhibiting the required property.

FDR supports a number of techniques for attacking the state explosion prob-
lem, including hierarchical compression and symmetry reduction [9]. The algo-
rithms underpinning FDR are set out in [24, 27, 8, 25].

4 Available at https://cocotec.io/fdr/.
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3 Living in a decentralised world

As a blockchain develops, we assume that at any time the set of legitimate
members is unambiguous — in developing block n+1 as a successor to the known
block n, the set of members and their rights and signature method are agreed
by all as a function of the chain to that point. These are the blockchain agents.
Similarly the rules on how to go about picking the next block are laid down as is
the target schedule for producing it. All agents have reasonably accurate clocks.
To be accepted, each message between the agents needs to be signed and have
a timestamp.

There is no synchronisation in such systems and yet we need the decentralised
system implementing a blockchain to step forward in steps that are recognisable.
This needs to be decisive and unambiguous despite the presence of malign agents.

We need to distinguish what we, as a privileged and god-like external ob-
server see by examining the states of agents and what is communicated from the
outside, and what is visible to agents operating in the collective system. Any
agent will in some sense know whether it is good or bad, and good agents will
not know which others are unless they have done something that marks them
out as bad. We assume that the bad agents are in league with one other.

We will create a model in which the state of the system is derived from
assertions that have been made by a designated collection of agents, namely the
pickets, and which of these the agents have seen. The state will be designated by
the external observer and the system will pass through a sequence tr of these.

Inevitably and unavoidably, agents themselves do not know for certain what
state the system is in because it could have advanced beyond the most recent
state for which it has evidence. Rather, we hope that each good agent has evi-
dence of some member of tr and is thus either up-to-date or is lagging behind. In
other words, it should be an invariant that each good agent — whether a picket
or not — has its current state set to a member of tr.

We will describe stronger invariants for pickets in the next section.
The main contribution of this series of papers is an abstraction, the consensus

machine, which allows groups of undependable and untrustworthy agents to
implement such a high-level ideal behaviour. This takes the established concept
of consensus by Byzantine agreement and generalises it, formalising it in a model
derived from process algebra.

The essence of this is an exact formulation of consensus in a group of agents,
each supposedly replicating what the ideal is meant to do. This is done in such a
way that, despite whatever level of malign behaviour is assumed to be possible
and the design allows for, it is the ideal behaviour that emerges.

In the world of blockchains this allows us to develop varying consensus al-
gorithms, including ones that erode the distinction between public and coali-
tion chains. By building in exception handling mechanisms we are able to build
blockchains that can benefit from incentivising good behaviour from bad agents
without relying on it. This paper concentrates on the proof of a protocol that
ensures that this exception handling does not create any inaccuracy or ambiguity
in decision making.
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To summarise: no one other than those with the god-like ability to see into
the states of all agents, and see their communications, can see the latest state of
a decentralised system implemented by a set of pickets. However, our aim is to
ensure that the state seen by the any component or external observer is always,
if not the global state, is one of its predecessors.

4 Keeping your pickets in a row

In this and the next section we show how to achieve this goal when a single set of
pickets is given responsibility. The minimal requirement of a set of pickets is that
if they all agree on a decision then everyone good, and all relevant regulators,
are satisfied that it is the decision, or at least a correct one that it is reasonable
for all to agree.

In general it may be unreasonable to force all to agree, and we expect that
in many cases sets of pickets will be selected where smaller agreeing groups are
sufficient.

For any set P of pickets, and each type of decision D, there will be a decision
set M of subsets of P such that agreement by any of these sets, or a superset,
commits the system to the agreed decision. We can therefore either assume that
M is a nonempty antichain of subsets of P or is superset closed and contains P .
The determination of what represents a member of M will be built into the rules
of the blockchain so there is no ambiguity about it: if a collection of pickets that
agree to a decision is presented, good agents will never disagree about whether
this commits the chain or not. In the following we use the superset closed version.

The criteria for what represents a valid M should depend on mathematical
analysis in at least one risk model, and may well depend on the requirements of
regulators in one or more jurisdiction. They might well depend on the nature of
the decision D and the jurisdictions involved.

It may also depend on whether it is conceivable that two different good nodes
might give different answers when asked for a decision on a particular question.
This may well be the difference between a clear cut decision about whether
something is valid or not, and a selection. No valid M can have two distinct
members that might select two different decisions in the same state.

In a world without jurisdictions and just good and bad agents, then unless
a secure communications framework prevents a bad node from communicating
different decisions to different parties, an unambiguous decision will require more
than half the good agents to agree with it. We will revisit this in the section on
stochastic inference.

In what follows we will assume that the analysis behind each M is accurate
so that ambiguity can never arise.

It is crucial to realise that we anticipate that reaching the hurdle of a member
of M will often require bad agents to agree: it may not be possible to reach this
hurdle without them. Understanding this is the key to this paper. Decisions are
safe because ones that are made cannot lead to bad conclusions. They may be
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incomplete because if the bad agents do not co-operate, no decision may be
reached at all.

5 The unitary consensus machine

By this we mean a structure for computing on one set of pickets. The set of pick-
ets P has been fixed, and we have an agreed correct mechanism for computing
the decision sets M . The purpose of the consensus machine is to reliably com-
pute the results of a high level state machine running against the background of
our assumption of malign agents being present.

The high level state machine HS is described in the following language:

a. A state consists of a control state label plus an accumulation of data, plus
output symbols. It also has an accurate clock

b. A state initially collects data. Once this is complete, potentially indicated
by its clock it moves to its compute phase.

c. It computes from its state and this data both an output and a new state.

This state machine represents the intended emergent behaviour of the con-
sensus machine.

This is compiled into a state machine that runs on each picket. This runs the
same state machine as HS except for the following additions:

1. Each state is labelled with the trace of actions that brought it there. Thus,
if the original machine can revisit a state, these visits are now treated as
different states.

2. It expects its inputs to be signed and checks these.
3. It signs its own decision: the outputs and proposed next state, possibly cou-

pled with a hash of the state from which these were computed.
4. There is a mechanism for aligning these input states: this might be agreement

before the outputs are computed or a reaction to disagreement apparent
when comparing outputs.

5. The picket reads the outputs coming from other pickets and publishes a
certificate when sufficient agree that the set is in the M for its current state.
This certificate contains the signed evidence of agreement and identifies the
state transition it applies to. It should contain information that allows a
picket seeing it to reconstruct its input state — e.g. the sources of that state
information.

6. The component machine changes states when it either creates or sees a valid
certificate for the state change, when this takes it to a later state than the
one it is now in. It ensures that its data is that of the new state.

In other words it is the demonstration of a valid certificate that represents
the state change in the decentralised machine. This could be anywhere including
in a bad agent. Just because the certificate exists does not mean that everyone
knows it. It follows that the states of the individual pickets are either the same
as the whole machine or a predecessor of that.
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The state of the unitary consensus machine (UCM) can be characterised
by the sequence of certificates that has arisen and the most recent certificates
seen by each good agent, together with all signed statements about the next
action. It would be possible to create a full operational semantics in which each
good agent runs through the component state machine and has its clock, while
each bad agent’s state and capabilities are essentially the same as the classic
cryptoprotocol intruder.

For this to work we require that there can never be a situation where a given
state can give rise to two inconsistent certificates: ones for different successor
labels or different outputs. This comes down to the accuracy of the models
supporting the construction of M . We also require that every state and output
is consistent with HS, the high-level target. This depends on the accuracy of M ,
in particular on the presence of a good agent amongst those agreeing on each
transition and the consistency of the data collection and the data state between
the two.

Though not necessary for safety, the determinism of the calculations under-
lying HS is also important, because if all components of UCM are behaving
properly we would expect that it will reach a valid conclusion. If there are more
than one possible result thanks to nondeterminism then they might be split
meaning that the threshold implied by M is not reached.

It is quite likely that multiple certificates arise for the same high level state
change, simply because different collections of pickets satisfying M are seen to
agree on the same thing.

Blockchains are frequently set up with incentive and penalty structures that
are designed to persuade the bad to follow the rules. We categorise bad behaviour
as follows:

1. Overt bad behaviour. Making contributions to the central discussions and
protocols of a chain or other decentralised system that will be seen and
recognised as bad. Unless this wins votes or similar, it will quickly recognised
and perpetrator punished.

2. Covert bad behaviour. Producing non-compliant structures that are kept hid-
den and only perhaps revealed later. For example developing a fork alongside
the true chain.

3. Non-participation. Failing to make contributions that are expected of a good
agent and thereby denying some correct action the majority it needs. The
main issues with this is that it is harder to penalise because a good agent may
encounter communication failures, a phenomenon that can also mean confu-
sion about how an apparently non-participating agent should be interpreted.
It is fairly standard to make gossiping assumptions about communications
in blockchains to resolve such confusion.

We will later show how to build hierarchical consensus machines, where con-
trol of decision making passes from one group of pickets to a back up mechanism.
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6 Stochastic inference

It is natural to use probability to assemble sets of pickets and produce decision
thresholds M . In this section we discuss a central case of how this can support the
picketing model. We will assume the blockchain can select pickets independently
and randomly from a given population, so that the number of good and bad ones
that make any decision is governed by a binomial distribution governed by the
number of pickets and the proportion of good agents in the population, weighted
the same way as the random choice.

It is wise to chose a mechanism for this that guards against sharding: bad
agents creating clones of themselves in an attempt to get chosen more often. One
such class of mechanisms is proof of stake where agents are randomly selected
with repetition: in choosing multiple agents, it is possible for the same one to be
chosen more than once; the k + 1th agent is chosen independently of who was
chosen in the first k.

If there are any bad agents around, it is possible that all the pickets chosen
are bad, just as throwing a 6-sided dice 100 times might give a sequence of 100
sixes. Rather it is almost certain that the distribution of a 100 picket choices
or the numbers thrown will be a lot closer to the expected values: p · 100 or
one-sixth each, where p is the proportion of the population who are bad. It is
relatively easy, when N pickets are chosen, to compute how likely it is that more
than r are bad.

To exploit this we introduce the idea of stochastic impossibility : an event so
unlikely that in the whole history of a system it is very unlikely ever to happen
to the extent that it can be disregarded. One might regard a one-in-a-million
chance as small enough, but if many (say a million) choices are going to be made
a year (approximately one every 30 seconds) it is clearly is not enough if a single
one can corrupt a system.

We believe that ϵ = 10−18 or, in terms of the normal distribution, 9σ (close
to 10−19 as a one-sided extreme: we are only interested in unusually many bad
agents, not good or bad), where σ is the standard deviation, is a good starting
point for stochastic certainty: the chance of a single choice going wrong being this
small. Someone might argue that it is not small enough because, for example,
the puzzles in bitcoin proof-of-work protocol (PoW) have a probability of about
10−24 and they are solved every 10 minutes on average. But in that world there
is no limit on the number of attempts to solve the puzzle and so one would need a
much larger number for effective impossibility: the combinatorics would probably
be the same as second preimage analysis in hash functions. In the world we are
thinking of, a system places a bound (e.g. a million per year) on the number
of trials. What this emphasises is that in assessing the requirements on the
unlikelihood of a single trial, the context in which it arises is really important.

In a strong sense the suggestion of 10−18 is about bounding the chance of
anything going wrong in a series of stochastic experiments conducted over time
by a well behaved party who conducts the experiments at a few times the rate at
which the data structure (e.g. blockchain) is incremented. It is only a suggestion.
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In general terms the criteria by which pickets are chosen and agents make
decisions must be agreed and public.

7 Stochastic decisions

From now on we concentrate on decisions based on assumptions about the pre-
ponderance of reliable good behaviour amongst the participants who are entitled
to participate in various actions. In particular we examine the case where all of
a population from which a group of pickets — delegated decision makers — are
picked are deemed equally likely to behave well. Specifically we assume that one
chosen at random has a chance bounded above by p of being bad or corruptible.
Little of what follows would change without the constant p assumption except
that the calculations would be more complex and potentially depend on exactly
who was chosen.

Our assumption means we can calculate on familiar territory.
Recall that Byzantine agreement only works when less than 1/3 of the voting

population is bad. Several of the options below require similar. We will therefore
normally assume p < 1/3, but will remark when this is not necessary.

We can now understand how to create the decision thresholds M described
earlier. In a group of pickets P , a subset G represents a safe (or dominated)
agreement if it is stochastically impossible that they are all bad. Thus if all
members of G agree on a decision, that decision must be a reasonable one. It
represents a safe (or dominated) strong agreement if it is guaranteed to contain
at least half the good members of P . Depending on the circumstances of the
decision, other thresholds may be appropriate.

Some sets of pickets will be too small, and even unanimity will not give a
safe decision. Otherwise the above allows us to calculate the agreements that
create valid certificates as described earlier. The appendix to this paper contains
some examples of these calculations. There is further illustration of this style of
stochastic reasoning in [28].

7.1 Who should we rely on?

Usually our systems do rely on decisions being made, and usually the systems
are more efficient if they can persuade bad participants to contribute mostly
as though they were good. Indeed for a consensus machine with a smaller set
of pickets to deliver results, this is necessary. To achieve this they need three
things: firstly strong incentives on agents not to misbehave and to participate
constructively, secondly a decision making mechanism that prevents the bad
from inducing a bad decision, and thirdly a fallback mechanism that can force
correct decisions when needed, all be it at the cost of lower efficiency.

The last of these should convince opponents that they will not be able to
permanently disrupt the system, for example by getting a blockchain to fork.
The worst they can achieve is complication and delay. One cannot reasonably
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prevent the bad from covert mischief, but overtly (in the sense that their non-
standard action or inaction is identifiable and visible to the community in the
normal course of events) saying the wrong thing or not doing what they are
meant to will attract penalties and bans.

It is not straightforward to justify immediate penalties for sins of omission
— where someone fails to perform a duty — as opposed to actually doing and
signing something wrong. That is because communications, power, etc, might
cause interruptions that are not the agent’s fault. For some functions an effective
alternative is to ban agents from doing anything at all if they have missed a duty.
How effective this is will mainly depend on whether the duty is still useful if
performed late. This varies: of our own innovations hooks [26] are certainly useful
even if moderately late, while releasing a contribution to a scheduled random
oracle [29] is not. Indeed our designs are created to make — in large part — non
contribution ineffective. Except for forcing the general population to do more
work. The main motivation for the consensus machine idea introduced below
is providing the required back-up mechanism: it allows us to initiate a decision
on the assumption that (most of) the bad agents participate normally in the
knowledge that the parameters will prevent a bad decision being made. (The
back up allows a decision to be forced even when bad agents do not participate.)

In any case it will be clear that persuading potentially bad agents to do what
is expected of good agents is an important part of getting dominated decisions,
etc, made with moderately sized groups of pickets.

Note that these are formulated so it is stochastically impossible for bad nodes
to have the system make a bad decision. A properly constructed group of pickets
will result in either a clear and correct decision, which is what we want, or no
decision.5

7.2 Deterministic decisions

It is most comfortable to engineer systems so that two good agents, if presented
with the same inputs, will come to the same decision. That should be possible
if they all base their calculations on exactly the same data, but may fail if they
bring in private data such as their individual interpretations of time. Or it may
fail if the execution involves sampling a large quantity of data. We would expect,
however, that every decision arrived at by a good agent will be acceptable to (if
not the first choice of) every good agent.

We cannot allow honest disagreement amongst good agents without factoring
this out carefully in such a way as to allow a unique conclusion being reached. Of
course this is more problematic in the pessimistic communication model where
at the minimum we need > 2/3 of the agents to agree — which will impossi-
ble even for a binary choice when the good agents disagree. Consequently we

5 In any multi-step agreement process like this where the subsequent calculations are
based on earlier agreement, it is clearly possible to attempt agreement on multiple
steps at the same time in anticipation that all parties turn out to agree on the earlier
data. That would be more efficient if agreement is normal.
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specify that all decisions must be based on the combination of public (to those
deciding) data that is agreed by all plus decisions about the validity of candidate
objects between which decisions are being made, and which contain all incom-
plete sampling. The latter can depend on both shared data (including in large
quantities) and hidden data. (Our model for this is time or potentially other
measured quantities.)

By the time a decision is actually made there needs to be agreement on
whether the options are valid or not. The first author has previously suggested
the traffic light model for this. In examining objects, each evaluator deems an
object H to be one of

– Strictly good, or green.
– Liberally good, applying weaker criteria to local limits such as time. Amber.

If any good agents deem green, all should deem at least amber.
– Bad, meaning a serious flaw found based on public data or serious divergence

on local. Red. A red flaw should have readily checkable evidence that any
agent can deterministically verify.

In this model the pickets or a wider population give a verdict. If there are
any reds then (bearing in mind that there may be much evidence and two good
agents may differ because one may find evidence that the other misses) then all
pickets check this. With this evidence visible the pickets then decide whether H
is

– Green: no valid reds and sufficient greens.
– Amber: no valid reds but insufficient greens.
– Red: at least one valid red.

H is valid just when green. Penalty regimes will differ for amber and red. In
the above model, both the determination of validity and the final selection are
separately subject to agreement.

8 Hierarchical consensus machines

We have already described how a consensus machine proceeds when it consists
of a single set of pickets synchronising, in a rather abstract sense, through certifi-
cates appearing. We have, however, consciously envisaged ones that fail to make
decisions, a situation very similar to the well-known phenomenon of deadlock.
Deadlock is not normally an acceptable behaviour of a complete system, and
certainly not in a blockchain that we expect to go on extending forever.

In this section we indicate how to recover from a deadlock in one machine by
letting another take over. Specifically we show how control of a decision making
procedure can be handed from one machine to another.

Any system running on a decentralised system that may have some misbe-
having bad agents is bound to have complications when trying to understand it.
Consensus machines are a mechanism for making such systems clear. Essentially
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we try to create collections of agents from which the desired program becomes
emergent behaviour, tolerating the presence of bad agents.

Our formulation is inspired by the large body of work on process algebra:
understanding bodies of agents that run concurrently and interact by forms
of synchronisation. In it, all the agents know the system description and the
good agents do exactly what that requires of them. The synchronisations of this
machine are certificates generated by the groups of pickets that are legitimately
running, noting that we will ensure it impossible for any other to be started.

When passing decision making from one group of pickets to to another the
transition might come because the first group has the evidence that it will not be
able to decide, and passes the token across itself. Alternatively, almost certainly
because bad agents fail to participate, it fails either to decide or see positively
that it will not. In both cases we need to be careful that control will not be
passed across when some agents in the first are already committed, or at least
that then the second produces the same decision.

There is an interesting analogy here with process algebra. CSP [24, 27] has
a number of ways in which one process can pass control to another. The throw
operator P [| A |> Q runs like P until it throws an exception in the set A,
which causes it to run like Q. On the other hand the interrupt operator P /\ Q
has P run, but if Q performs any visible action it takes over.

The more difficult of these cases for us is where one group of pickets is taking
over from another by its own action. That is because if a group of agents decides
to hand over, there will be sufficient agreement to do so, excluding any other
action. Handing over to a second group means that the first group has not made
the big step decision and furthermore no member of the group can legitimately
decide it has as that would be inconsistent with the decision that it cannot make
one. The process taking over cannot have instantaneous effect on all the nodes
of the other, so cannot eliminate all possibility of a decision emerging from there
later. By watching events appear as certificates we cannot get the same clear
effects that are usually assumed in process algebra.

In order to implement such handover operations properly, we need to design
the participating machines properly and expose the necessary parts of their
behaviour. This is of course a general principle. At the level of a unitary consensus
machine the component agents need to make their signed outputs permanently
visible to others. Each of them can have other internal machinations towards
computing these. Of course any value or signal with other external significance
needs to be exposed.

In implementing the handover protocol we end up with two or more unitary
machines running side by side and interacting. We choose not to add any external
framework but rather to modify the unitary machines so that their interaction is
built in. The actions (i.e., certificates) of these modified machines fall into three
categories:

1) The decisions that the hierarchical machine is making for the outside world,
and others of interest outside this compound object. We expect here to
promote these actions to ones of the combination.
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2) Any decisions that are of interest to the others in the combination to guide
their actions. In our protocol we abstract these interactions into writes into
storage which are read by the others according to a nondeterministic disci-
pline that we discuss below.

3) Ones that are only of internal interest to the individual unitary machines;
typically representing synchronisations on having reached some point or
agreement on data. These can be disregarded.

Given the interaction described under (2) using storage locations, we treat
externally visible progress (1) as big steps and the others as small steps. We do
not care about the pattern of small steps but will seek to ensure that every-
thing visible from the outside implements the specification implied by high level
models.

Suppose we have set up two machines G and H to make the same decision,
where G is the primary mechanism and H is a back up, it is in some sense safe
if each of the two is, and complete if we can rely that H eventually takes over if
G does not give a complete resolution, and H itself being complete.

But this is not the whole story. When H starts this is because, most likely
dues to a time out, it suspects that G is deadlocked. But G might just be slow,
and furthermore signals from H may not prevent it and so a decision might
emerge from each. Both would be fine in isolation, but the ambiguity of two
might well be a disaster. For example if the decision is choosing the next block
of a blockchain then this might lead directly to a fork, and so those attacking it
might encourage the conditions for it to occur. In the next section we show how
to prevent this possibility by implementing a protocol between G and H in the
general terms set out above. We will specify and verify this in the next section.
This protocol does not prevent H and G both issuing decisions, but makes sure
that if they do they are the same.

With this we have the ability to create hierarchical consensus machines in
which the control is first given to a safe but incomplete group of pickets that
works efficiently in the event that not much of the enemy engages in overt misbe-
haviour or non-participation. They can hand over in one or several steps to less
fragile mechanisms in the sense that it is harder to prevent a decision emerging.
The bottom level will be a mechanism that, under standard assumptions, always
deliver a correct decision but will typically involve more effort.

9 Modelling hierarchical consensus machines in CSP

There are two models presented below. The ideal model represents the behaviour
of the decentralised G and H at an abstracted level. The G, H and storage
locations used are not conventional sequential processes, but instead represent
abstractions of the overall behaviour of many cooperating processes, configured
to work together as consensus machines or equivalent. The model can therefore
represent very general systems. The distributed model is an illustration of how
this behaviour might be realised in terms of more concrete processes.
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The protocol we present here has much in common with mutual exclusion.
We want to prevent something akin to a race condition. An obvious question is
whether we could use a simple mutex between G and H and only allow one to
make the decision. The answer is no: it is part of the make-up of G that it can
deadlock at any time. If it were to seek the right to make the decision but then
deadlock, then the system would deadlock too — contrary to our specification.

9.1 Ideal model

Section temporarily redacted.

9.2 Distributed model

Section temporarily redacted.

10 Related work

Many classical protocols [23, 16, 15, 18] exist to solve the Byzantine agreement
problem [22]. The emergence of blockchains renewed the research community’s
interest in this problem — and more generally on the problem of achieving
consensus in distributed systems — leading to a number of new protocols [20, 5,
30, 32, 10, 13, 2, 4, 7].

The first consensus protocol proposed for blockchains was Proof-of-Work
(PoW) in the context of Bitcoin [20]. Intuitively speaking, in this protocol, min-
ers (i.e. block producer candidates) attempt to solve a cryptographic puzzle, and
the first one who solves it is entitled to propose the next block to be added to the
chain. Arguably, the main drawback of PoW protocols is how energy inefficient
they can be [17, 31]; the larger the network the more computing power is used
to constantly solve these cryptographic puzzles. Proof-of-Stake (PoS) protocols
have been proposed [2, 10, 13, 6] as energy efficient alternatives to PoW ones.
Hybrid PoW-PoS protocols have also been proposed [14].

In Proof-of-Stake protocols, agents signal their intention to participate in the
block production process by staking a sum of cryptocurrency, i.e. the stake, they
own. Staking means that this sum is locked (i.e. escrowed) for the duration of
this process and it may be slashed as a means to punish bad behaviour. The
frequency upon which agents are selected to participate in this process is pro-
portional to the size of the stake. Note how in PoW computing power determines
how often an agent is “selected" to produce a block as opposed to staked cryp-
tocurrency in PoS. In PoS protocols, agents can be selected as a block producer
but also as a member of a committee which is typically in charge of either elect-
ing block producers or finalising blocks, namely, determining whether a block is
immutable and the only valid block at a given height. Before a block is deemed
final, a number of candidate blocks at a given height might be “competing" to
become final. Some PoS protocols rely on probabilistic mechanisms to determine
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the finality of a block — e.g. Algorand [10], Ouroboros [13] — whereas some oth-
ers rely on deterministic mechanisms — e.g. Internet Consensus Computer [7],
Casper FFG [6], Tendermint [4]. Our handover protocol is meant to be used as
a part of a PoS protocol to achieve deterministic finality. A PoS-based selection
mechanism is used to choose committees of agents — their sizes are estimated
based on our stochastic calculations — to implement machines G and H and to
decide on the next final block using the handover protocol.

Despite being designed to be part of a fully-fledged blockchain consensus
protocol, the handover protocol alone is closer in nature to Byzantine agreement
protocols like [18, 21, 15, 32]. Abstractly speaking, these protocols have been de-
signed around the use of the votes to form decisions and of a threshold/quorum
to ensure safety. In fact, PBFT [18] specifically — and this voting mechanism
more generally — has been a source of inspiration for many current blockchain
protocols, including ours.

11 Conclusion

In this paper we have used formal tools to understand how consensus can arise
in decentralised systems. Essentially we have set out a programmatic approach
to laying down and analysing consensus: given a population of potential block
creators and the potentially multiple perspectives of different users we need to
establish a trust model that they are all happy with. We then have the job of
having the blockchain select sufficient groups of pickets and decision criteria that
all can be sure of any positive decisions they make.

On the assumption that we can incentivise most bad participants to partici-
pate apparently properly, this will give us all we need. But an essential part of
such motivation is that the bad know that if they do not collaborate like this
they will be defeated by a back up mechanism.

We have shown how to formalise both the primary and secondary mechanisms
as Unitary Consensus Machines. While much of our treatment was inspired by
process algebra, we were both able to design and verify the crucial protocol that
links a hierarchy of decision making in CSP and FDR.

By allowing such hierarchical consensus decisions, we believe that we have
tools for making blockchains more varied and flexible. We hope that our ap-
proach to creating the component machines which compose together to provide
consensus can be automated.

It is only natural — to people steeped in such languages and tools — that CSP
coupled with FDR is a good way to model complex interactions in decentralised
consensus. We are pleased to have demonstrated the truth of this intuition.
While the full systems representing consensus may be too involved to fit within
the abstractions of such tools, it is comforting that like so many other areas of
concurrent reasoning, we can find levels where they bring real benefit.

We hope that others will be found, and that our tools for bringing clarity to
the topic of consensus will find many interesting applications.
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Appendix 1: stochastic tables

These tables are based on the case where it is assumed that, to a good observer,
each of a randomly selected group of agents has probability no more than p of
behaving badly. This bad behaviour is generally assumed to be Byzantine: such
agents can behave perfectly, do nothing at all from some point, or do absolutely
anything else.

The randomised selection may be on the basis of head-count: each agent is
equally likely to be selected. Or it may take account of some weighting such as
the stake that each controls. For the latter, it works much better if the selection
is with replacement: namely it is permitted for one agent to appear multiple
times in the same group.

In Table 1, the left hand column shows the assumed probability p of choices
being bad in the rows. The bottom row shows N the number of agents selected.
Where there is a figure it is the smallest number of agents agreeing that stochas-
tically proves, with a 10−18 threshold, that there is a good agent amongst them.
Red entries in the top left are where even seeing all agents agreeing does not
prove this, as it is deemed possible that all the agents are bad. In purple areas
with an asterisk, the number is small and we clear of the coloured thresholds.
The green and purple regions represent parameters where there are guaranteed
to be more goods than bads, and respectively more than twice as many goods
and bads. For example, with p = 0.05 and N = 50 we see that there can be no
more than 16 bad choices, so 17 must (no matter how they are selected) will
contain at least one good one, and all 50 will have at least 34 good. Thus this
entry is in the purple zone where more than 2/3 are surely good. This what we
need for constructing a decision making H that the bad agents cannot deadlock.

Recall that a strong dominated majority requires at least half the good nodes
to agree. Wherever there is a number k in this table the largest possible number
of bad nodes is one less than this figure and the smallest number of goods is
N − k + 1. It follows that to have over half the good nodes agreeing we require
k + (N − k)/2 to agree. Even if all the bad nodes are in this set, then those left
are more than half the goods.

Table 2 supports situations where we want — to some degree of certainty —
that less than half of the agents in a random sample are bad. This means, for
example that by setting up a threshold encryption which is opened by exactly half

0.33333 40 47 53 65 76 127 219 304 467
0.25 29 35 43 46 55 64 106 178 246 374
0.2 20 26 31 36 40 49 56 91 152 208 314
0.15 17 22 27 30 34 41 48 76 125 *
0.1 14 18 21 24 27 33 37 59 * * *
0.05 9 12 15 17 19 22 * * * *

N 20 30 40 50 60 80 100 200 400 600 1000
Table 1. Calculations for at least one good agent.
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ϵ value (given as log10ϵ)
-3 -6 -9 -12 -15 -18

Mσ 3.0902 4.76 6.002 7.03 7.943 8.759

p

0.3333 77 182 289 396 505 614
0.25 29 68 109 149 190 231
0.2 17 41 65 88 113 137
0.15 10 24 38 52 66 80
0.1 6 13 21 28 36 44
0.05 3 6 9 12 15 18

Table 2. The table shows how many participants are needed to ensure that less than
half are bad (with certainty 1− ϵ), for each given likelihood p of any individual agent
being bad. For each ϵ value, it also gives the equivalent multiple Mσ of the standard
deviation σ, above the mean, that is exceeded with probability ϵ (see the appendix for
further details).

the sample, the bad nodes involved can neither prevent the value being revealed
by the good agents in the sample, nor can they prevent it being released. The
table imagines that we may demand stochastic certainty for this or may tolerate
a larger probability of failure, which would have to be allowed for.

The top row indicates, as a power of 10, the tolerated probability of failure
ϵ. The second row translates this into a number of standard deviations in the
normal distribution. The left hand column shows the assumed probability p of
a bad agent, and the table entries show how large N has to be so that the
likelihood of there being more than N/2 bad agents is less than the chosen ϵ.
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