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Abstract

Fair exchange is an important primitive in transactions where the
parties do not completely trust one another. It is well known to be im-
possible to implement this with 100% assurance without a trusted third
party. The blockchain is a sort of trusted third party built out of many
untrusted parties, and a very popular target for systems involving peer-
to-peer (i.e. without passing via central authorities) transactions. In
this paper we show a number di�erent ways in which fair exchange can
be implemented.

1 Introduction

Suppose a group of parties have agreed a transaction in principle that will
involve them passing valuable things to one another in some pattern. We
assume that all these things, whether goods or money, can be passed from
one party to another via a single electronic message passing a digital token.
Even if they agree a complete schedule of how the value will be passed, there
is nothing to compel any of the group to send a particular message. The
danger is that after Alice has sent Bob X, there is nothing to compel Bob
to send Alice Y in return. Of course there may be mechanisms for putting
Bob in disgrace, but there is no direct way of preventing him from running
away with both X and Y . We will concentrate on binary exchange, namely
between two parties.

There is an extensive literature on fair exchange, including the demon-
stration that implementing it with 100% guarantees is impossible. Two
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approximations to this are optimistic fair exchange, in which the parties go
ahead without a TTP, but can bring him in to complete the deal if all does
not happen properly, and stochastic fair exchange, in which the exchange
happens at a point and order unknown to either party. If one of them cheats
then he does not know whether he is bene�ting himself or the other party,
and we can make the likelihood of these as nearly equal as we please.

The blockchain is widely proposed as a platform in which parties can hold
assets and trade them. The standard unit of commerce in the blockchain is a
transaction that passes value from one party to another: value is an unspent
transaction to your identity, as represented by a public key, and you pass
value on to another party by signing a copy of the transaction, details of the
identity receiving it, and the amount being transferred. Thus the problem
of fairness remains: Bob can still receive a transaction from Alice and omit
to send one back.

In this paper we make the blockchain's participants co-operate to gener-
ate essentially the same sort of behaviour that we would expect a traditional
TTP to have: there is no expectation that both transactions will happen in
the same blockchain or any.

2 Background

It was proved in [] that binary fair exchange is impossible without a trusted
third party. The blockchain architecture is designed for distributed applica-
tions in which there is no universally trusted party. At �rst sight it therefore
seems as though fair exchange ought to be impossible in such a scenario. The
blockchain is, however, a structure designed to create a reliable distributed
database in the context where some majority of parties in it (typically just
a simple majority, perhaps with some weighting), are trustworthy.

A blockchain is simply a chain of blocks of data, linked together by each
holding the cryptographic hash of its predecessor. It is coupled with a proto-
col for adding new blocks. The parties who create new blocks are generally
called miners. In a public blockchain anyone is allowed to propose a new
block, whereas in a private or \coalition" one only an authorised party may
do so. In the latter the assumption is usually that the collective trustwor-
thiness of these miners is understood and acknowledged by all, whereas in
public models there are costs and incentives build in to the mining process
which are designed to incentivise honest and accurate mining.

The objective is that once a block is in the chain it will, sooner or
later, become �xed, or immutable: it will never change. The immutable
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part of a blockchain is an attractive data abstraction because it provides a
deterministic communication mechanism between the parties and an agreed
truth. Blockchains are write-only databases: data is only added to. The
index of a block that some item is provides a reliable time-stamp, and this
time-stamping mechanism can be re�ned by adding time-stamps to items
within blocks in a necessarily (because of block agreement) agreed way.

Blockchains are well-known for their ability to support transaction mech-
anisms such as digital currencies, but have many other proposed uses.

In any blockchain we really need to be able to identify the time at which
any block becomes immutable: will remain on the chain for ever together
with all its predecessors. Such a time might be explicit and in many private
blockchains will equate to the point at which a block is created and approved.
In others there might be a mechanism for de�ning this point, for example by
the open publication (e.g. in a news paper) of the hash of this or a successor
block. In further ones it may simply be because the cost of revising the
block and necessarily its successors has passed some limit of practicality.

Any form of transaction which is either between a blockchain and the rest
of the world, or in which a blockchain mediates a transaction involving value
that lies entirely outside itself, needs to bear this question of immutability
in mind. For it does not make sense to swap something real and tangible
for a transaction which might subsequently get voted out of history. Thus
we are free to assume that fair exchange wholly within a blockchain can live
within the standard understanding of blocks there, but where we are using
one to determine external transactions, we will assume that data must be
immutable before it is acted on.

The methods described in this paper are best suited to private and main-
stream (hybrid) models of blockchain where there are parties who are moti-
vated to behave in a trustworthy manner for reasons other than that there
is no pro�t to be made from not doing so.

3 Fair exchange via distributed escrow

In a traditional setting, after Alice and Bob both agree a transaction: Alice
sends X for Bob in return for Y , they sign a certi�cate about what they
intend to do and send it to a TTP. They then send X and Y to the TTP,
who when it has the certi�cate, X and Y sends X to B and Y to A. If the
TTP does not get these things it sends whichever of X and Y it holds back
to sender. We can also give the TTP the duty of checking that X and Y

have whatever properties are claimed of them in the contract.
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In the blockchain no single party is trustworthy, so we need to �nd a way
of making the nodes as a whole behave like the TTP above. We certainly
cannot give any single party control over X or Y . In essence we want the
nodes of the blockchain to hold X and/or Y in something like an escrow
form and release them to both the recipients or none at the point where it
has them both. We will refer to the nodes that perform the transfer as the
workers. In some contexts it would make sense to identify these with the
miners of the blockchain.

We will assume that X and Y take the form of bit-strings that pass
value: something like an as yet unregistered blockchain transaction, where
Bob and Alice placing them on the blockchain will transfer value to them.
We will always assume that A and B have signed a certi�cate of intent to
exchange X and Y , and this is visible to all the workers. We observe that
it is not often that simple knowledge of a string of bits conveys value. One
example of this would be the number of a bank account from which anyone
knowing the number could obtain money.

More usually the string is something that identi�es Bob (or at least an
alias) and transfers the asset to him: perhaps a cheque, stock certi�cate in
his name that he has to register, or a property transfer document. In the
blockchain a transaction would identify the agent that the asset is being
transferred to.

The di�erence between these two cases is that in the �rst we cannot
allow a possibly untrustworthy third party to know the bit-string, whereas
in the second we can (unless secrecy of the transaction or some detail of it is
itself required.) For the time being we will assume that the intermediaries
may not know X and Y , and later explore another option when they can.

Following on from [?] (which shows how to model delay encryption in
a blockchain-like environment where trust is again not placed in any one
party) a good �rst move seems to be for Alice and Bob to apply threshold
cryptographic construction to X and Y so that holding less than k shares
conveys no information about them, and holding k or more conveys the
complete value. We will discuss later what N and k might be, but certainly
N is less than or equal to the number of participants in the blockchain
available to be workers. If A and B are themselves in the pool of potential
workers, it is probably a good idea to prevent them from being chosen.

We will assume that each participant has its own public and secret keys
that can be used for sending it con�dential information and allowing it to
sign things.

As a �rst attempt assume that each participant behaves, with threshold
shares, like the single TTP described above. It waits to get shares of X and
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Y and, when it has one of each, forwards these to Bob and Alice respectively.
This does not work, for if Alice sends just k shares and Bob sends all his, but
at least one of the parties receiving one of Alice's shares is corrupt and under
Alice's control, then Alice can receive k shares of Y (and thus Y itself) but
the corrupt one will not send its X share to Bob, meaning that Bob does
not receive Y .

We can, however, solve this problem using the properties of the blockchain
as a data structure that gives a consistent view to everyone. Modify the
above protocol so that as soon as any worker has a share of X and one of Y
it posts a signed message to this e�ect (but not the shares) on the blockchain:
call these the intermediate certi�cates. Note that if 2k�1 nodes have posted
such a message then at least k of them must be telling the truth, because
there are less than or equal to k � 1 corrupt ones. They therefore take the
existence of 2k � 1 such signed messages on the blockchain as a trigger to
release their shares to Bob and Alice. These parties must now receive at
least k valid shares of X and Y .

We can ensure that they do not accept any incorrect shares because
Alice and Bob will be told to place a hash of each share on the blockchain
at the start of this protocol. Thus if Bob or Alice (or indeed anyone else)
receives something purporting to be a share which is not, this can be checked.
(Alternatively Alice and Bob can simply sign all the shares.) We will later
discuss how that X and Y that are being traded can be checked rather than
simply that Alice and Bob are sending known shares.

It follows that the existence of 2k� 1 signed messages on the blockchain
ensures that Bob getsX and Alice gets Y , Because the untrustworthy parties
never have more than k � 1 shares of either, it follows that Bob gets X if
and only if Alice gets Y : fair exchange.

An alternative tactic for a corrupt party is not to do its job of posting
a message when it has one share of each of X and Y . If they all cooperate
on this then we will need N � 3k � 2 to ensure that if Alice and Bob give
all their shares to them then at least 2k� 1 will write that they have one of
each.

We can therefore state this as a condition that guarantees that our al-
gorithm will work.

Note that the use of threshold cryptography achieves the con�dential-
ity goal that the intermediaries do not learn X and Y , provided that the
communications around the network are appropriately encrypted.

The above protocol does not carry out the transfer when the 2k � 1
threshold is not reached, without expressing a limit on when it can happen.
It would be normal to have a time limit on how long it can take, and ensure
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that Alice, Bob, and as far as necessary the system achieve consensus on
when an exchange has timed out. This is often one of the hardest parts of
fair exchange, but fortunately the presence of a blockchain is very helpful
here. What we need to do is have Alice and Bob agree a time limit up front,
and replace the requirement that 2k � 1 messages appear at anytime, but
the requirement that they appear in blocks timestamped before that limit
T . Then as soon as a block with greater timestamp than T appears before
2k � 1 intermediate certi�cates, then all (at least trustworthy) participants
can rely on the abandonment of the exchange protocol.

3.1 Alternative packets

Seemingly any mechanism for fair exchange without a single TTP has to
divide up X amongst things to send to separate workers, since sending the
whole thing would put it at risk.

The solution above of using threshold cryptography achieves this, and
also achieves con�dentiality of what is being sent. The latter may be an
advantage but also a disadvantage, because there is no obvious way in which
the workers can verify that X is what it claims to be.

This is potentially solvable at the expense of con�dentiality. It we were
to have A and B send any sort of tokens conveyingX and Y , and ensure that
these were not usable for value unless B or A have k distinct shares, then
in terms of transferring value this would be identical to the one involving
threshold cryptography.

For example, the tokens could be of the form (A;B;X; i; k)sk(i) where A
is transferring X to B, and that this is distinct token index i with k required.

With tokens of this form, it will be possible for each of the workers Wi

to verify the correctness relative to the contract of X and Y , and only sign
the intermediate certi�cates when satis�ed.

3.2 Alternative voting

The two schemes above both assume that all workers have equal in
uence.
In other circumstances we might want to give them di�erent levels of trust,
or allow them to contribute to the process only by some amount of proof of
work etc.

The �rst of these can be dealt with by giving di�erent workers di�erent
numbers of shares of X and Y depending on how much they are trusted,
or in the case where the shares are not from threshold cryptography simply
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giving some shares more weight than others. (In either case presumably k

would need to be adjusted to account for the total mass of shares.)
We can create a proof-of-work puzzle out of sending a single value such

as a threshold share. For example if such a share is xyz where xy consists of
e�ectively random bits, and x is of length r, then sending (yz; hash(xyz))
(where the hash is much longer than x) represents a puzzle which on average
will take Bob 2r�1 hashes to compute.

Thus Alice can send Bob s shares, and he can compute as many as he
likes subject to doing the necessary work. Alice might want to limit s to be
less than some fraction of k.
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