
Delay and escrow in the blockchain

(Draft)

A W Roscoe∗, and Bangdao Chen
Chieftin Lab, Shenzhen and University College Oxford Blockchain Research Centre

Abstract

In this paper we show how to implement exact-time delay encryp-
tion in a trust environment like the blockchain, where we can be confi-
dent that some sort of majority of participants are trustworthy but not
any individual one. In other words we give a protocol for generating
delay(x, t), a value which gives no significant information until time
t, whereupon it can be decrypted to x by anyone. We highlight some
applications of this construct, show how it can be extended to a more
general form of escrow, and show how both of these constructs have
interesting applications.

One of these is the creation of a fair and unbiassable source of
random numbers in the blockchain: a random oracle. This in turn has
many applications.

1 Introduction

Time-lock encryption [1, 2] was first described in the 1990’s, generally with
the implicit assumption that the delay would be long. delay(x, t) is, to us, a
value which can be decrypted by anyone at time t or beyond, but by no-one
before this time. In [4, 5], the first author showed how it could be used to
create protocols that are harder to attack and a mechanism for stochastic
fair exchange. In both cases this is done by carefully denying participants
information that might allow them to cheat, or cheat more effectively, if
they had it too early.

In these applications there is no hard-and-fast schedule for the delayed
information to become available. All the protocols need is that it does not

∗Also Oxford University Department of Computer Science

1



become available before some t that represents a time limit for some protocol
action being completed, and can be extracted by anyone some reasonable
time after t. There is no requirement that the contents are available at pre-
cisely t. We will term this lower bound delay, and we expect this to be used
most frequently in applications where the consequence of opening a delay is
to complete a process without a strong timing requirement on its comple-
tion. This admits an implementation without a trusted third party (TTP):
the party creating it applies a function with a publicly known inverse that
takes a significant amount of sequential computation to compute; sufficient
so that no-one can compute the inverse before t.

It is not obvious, however, how to implement exact delay (where any-
one can obtain x immediately on t) without a TTP. With a TTP there
are various options. In Section 3 we will show how it can be achieved.
We then build a model of a blockchain system and show how it can both
work on that and provide useful security for some trading applications and
smart contracts. We then show how the same ideas can be used to create a
blockchain generalised escrow system.

The applications we have in mind in this paper will have much shorter
delays than those imagined in the early papers: perhaps seconds or minutes
or the time it takes for blocks in a blockchain to become immutable. At any
rate far too short for an advance in algorithms, hardware or cryptanalysis
to make much of a difference between the time of encryption and the time
of release.

In this paper we take it as given that all nodes actually know the time to
a high degree of accuracy: they do not need to read it from an agreed central
resource. However they can potentially do things they are not supposed to
or fail to do things that they are, whether time-based or otherwise: so they
might for example lie about the time. We will concentrate on ensuring that
overall goals are met despite some of the nodes misbehaving. Of course
there are also potential threats to a distributed protocol from attacks on
the network combining them, but that is an orthogonal issue that the likely
implementation using a blockchain helps to address, but not entirely.

In the next section we discuss how to implement exact delay in a blockchain
and similar trust environments. We then look at some example applications
of that before extending the idea to generalised escrow. Finally we show
how delay encryption allows more secure implementation of the blockchain
itself by giving it a fair choice mechanism.

2



2 Implementing exact delay

If we had a TTP (Trusted Third Party) Sam then exact delay could be
implemented as follows (as reported in [4]). Sam is programmed to create
a new key pair (pkr, skr) for each time in a series t0, t1, t2, . . .. Well before
time tr, Sam signs a certificate announcing that pkr is the key for time tr.
At time tr (not before or after), Sam releases skr. This approach scales far
better than getting Sam to actually hold onto the delayed values, because
the amount of work Sam does is completely independent of the amount of
material being delayed: no work by Sam is required for any individual delay.

Supposing for the sake of argument that the pkr are generated and posted
no more than a day before time tr, we note it will be possible to revise things
like key length and signature algorithm dynamically so that the system can
remain confident of their security, but there is most unlikely to be any need
to do this for a time tr where pkr has already been released.

Now Alice can create a delay encryption of X to any time tr: she simply
reads pkr and then delay(x, tr) is {x}pkr (where it might be desirable to add
salt depending on the application). Clearly no-one other than Alice herself
and Sam can obtain x beyond the appointed hour.

Of course if Sam were not trustworthy he could fail to deliver skr on
schedule, release it early, or tell his friends the value early. It would not
normally make sense to send a delay encryption built using Sam’s keys to
him, because he already has access by knowing the key. Thus Sam might
be an agent who only implements this and similar services, or there might
be a choice of TTPs so that an independent one can be chosen.

Note that there is limited need for the release of skr to be secure, since it
can be checked against securely signed pkr , though there may be pragmatic
reasons for signing it or securely releasing a hash of it together with pkr as
this, as this may cut down the potential for attackers causing mischief.

Now we will study the situation without a conventional TTP, but with
a collection of parties bearing resemblance to a blockchain. Specifically we
assume we have a collection of nodes W1, . . . ,WN where by common consent
it can be safely assumed that any collection of k of them are not all corrupt,
and where N ≥ 2 ∗ k − 1. So in particular more than half are assumed to
be good, but we do not know which. We also assume that the nodes (as
we assumed for blockchain nodes) all have an accurate clock, and that there
is a workspace (which, when this is a blockchain implementation, might or
might not be the blockchain itself) where nodes can post messages for the
others to read, with this process being reasonably reliable.

Note first that if Alice has issued delay(x, t) to someone before t, then

3



it might not be in her best interest for x to become visible at t– perhaps it
records a bet which by t it is apparent she has lost – or indeed Alice might
be offline at that time. It follows that Alice cannot be relied on to do her
own releasing (which she could of course do). So we need to find a way to
guarantee the release of x under the above assumptions.

One description of the blockchain is that it represents a trusted third
party made up of many individually untrustworthy actors. However it is not
the sort of TTP that is obviously usable for creating exact delay. We will
form an abstraction of what can be trusted of it later. It is certainly improper
for any individual node (and so potentially corrupt) to hold information
that allows it to deduce the delayed value x directly (because it knows x) or
indirectly (because it, for example, has access to both {x}k and k for some
symmetric key k). We will assume that we have picked N actors within the
blockchain that obey the trust model above.

Rather than have a single process creating key pairs, have our N selected
Wi all individually generate them. We ask all of these N processes Pj to
create a key pair (pkji, skji) for each ti, and individually to release the keys
pkji and skji on the same schedule and basis as outlined above. If we are
using a blockchain we might expect the pkji to be placed on it. It is quite
likely that the skji need to be released in a prompter way since we do not
want the delay release to get delayed by blockchain protocols. In any case
they can be verified to match with the pkji, for example using hashes as
indicated above. It is not necessary to use the same N parties Wj for each
ti, but we imagine it often be usually convenient to do so, or at least use a
predictable schedule.

To create delay(x, ti) Alice now uses a threshold encryption scheme such
as Shamir’s [6] to deliver M ≤ N shares sj of x such that any k of them
reveal x but k − 1 reveal nothing, where both Alice and in some sense the
network itself are sure that there are not k corrupt members of the group,
and at least M − k will successfully deliver the necessary secret keys on
time. She encrypts sj with pkjr (where available), and delay(x, tr) is just
the combination of these {sj}pkjr . It would be sensible for delay(x, tr) also
to contain any necessary details of the encryption, the value tr and a hash
of the combination of x and all of these.

As a protection of the integrity of the scheme it may be wise to salt x
with an unguessable nonce and thus include the nonce in the hash. Naturally
the delay value, like any other cryptographic value, may be signed by the
originator depending on context.

An untrustworthy participant can do one of the following to try to frus-
trate us:

4



• He can fail to produce pkjr. But at least k do and furthermore Alice,
in creating the delay, will not use pkij that have not been issued, going
to other nodes’ instead. Thus this is poor tactics for a corrupt node.

• Where he has released pkjr, he can release skjr early or late. But at
least k correct values do get released at tr and the shares sj deducible
from the skjr released early tell us nothing.

• He can release wrong values for pkjr of skjr. But the integrity of such
a pair can be checked and has nothing to do with sj .

• The last two are poor tactics, because they are both essentially public
disclosures of untrustworthiness. A more dangerous misbehaviour is
if it discloses skjr to selected parties covertly. However the fact that
there cannot be as many skjr thus released for any tr as needed means
than no-one can obtain x early.

It follows that Bob (and everybody else who has delay(x, tr)) can get k
correct shares and deduce x, but that no-one can access x through this value
before that. (It is assumed that the Wi are not themselves sent delay(x, ti)
or that any good one who is is trustworthy enough not to conspire with k−1
bad ones.)

From the point of view of network security the main issue is ensuring that
the skij are promptly visible to all nodes once released. We imagine that
this may include a degree of propagation or duplication. The communication
and availability requirements our algorithms need are close to those required
for blockchains.

We would expect Alice to follow a protocol for choosing M ≤ N and k,
and where M < N the nodes whose pkjr are used. This might well be laid
down for a particular application of delay. After all, Alice is not the only
person to depend on the reliability of this delay value, and we would not
want her picking only her special friends who might be partisan. We will
discuss this later.

2.1 Blockchain assumptions and applications

The blockchain is, at the time of writing, widely touted as a solution to
many problems in distributed data storage, asset registers, and transaction
execution.

There are a number of different views of what a blockchain (or distributed
ledger) is, what can be assumed of it, and how it should be used.

For us it is the following:

5



• A database with a collection U of users, of whom a subgroup M are
“miners”, namely those who build and maintain the chain. Some users
can be tied to real-life entities, and some are anonymous pseudonyms.

• Anyone can write into the database. They have a choice of whether
to sign such items or not.

• The miners decide which items succeed in being written by a consensus
mechanism. They only have the right to reject a write if accepting
it would violate a consistency rule of the blockchain (e.g. a double
spending transaction). They use some consensus mechanism to achieve
this.

• The miners create blocks of writes which are issued in a strict sequence,
which is enforced by each non-initial block including a cryptographic
hash of its immediate predecessor. The blocks are internally authen-
ticated by hashing (Merkle Trees).

• They have a time-stamping mechanism that assigns times to items in
blocks such that all times in a successor block are greater than all in
its predecessor.

• Depending mainly on whether this is a public (i.e. anyone can mine)
or private (mining is restricted to relatively few authorised parties)
blockchain, there is the possibility that an issued block can be voted
out of existence, so that history can change.

In a typical private blockchain it will generally be easy to assert the
trust model assumed in the last section. Here anything less than perfect
trustworthiness is assumed to be unusual, though not impossible. However
in a typical public blockchain model, where trustworthiness is not assumed
and correct mining behaviour arises primarily because of the carefully con-
structed incentive models, it causes problems unless there are a number of
nodes who can probably and independently be trusted for separate reasons.
We think it is a good idea, as proposed in [3] to motivate essentially trust-
worthy mainstream players to participate, to increase the general level of
trust. Preferably they should do so publicly, not only so that they can be
identified as trustworthy but also to make them more so as they will espe-
cially not want to be seen to do wrong. We imagine that the Wi chosen will
generally be picked from such players if it can be agreed who they are.

Certainly, in private and mainstream blockstreams, we see no particular
reason to identify the workers Wi chosen for the escrow task above with the

6



self-selecting miners. We will have an incentive mechanism by which self-
interest will directly force the latter to behave themselves. With the former
some degree of selection is possible and the incentives possibly more subtle,
though only overtly detectable misbehaviour can be penalised.

Blockchains generally represent assets as unspent transactions: there is a
transaction transferring some money, shares, land etc. to Alice, and she has
not spent it yet. Transactions between anonymous identities are effectively
anonymous: ownership comes down to knowledge of some key. So although
everyone using a blockchain can see what transactions have happened on it,
the fact that identities can be concealed, together with other information
(such as what is being transferred) that is not essential to the ledger can be
concealed.

So in particular all details of a transaction that are not required to be
present simply for the blockchain to function can be delay encrypted.

Many stock exchanges and other services will require much greater trans-
parency than this, meaning that things like the beneficial owners (before and
after a transaction) may need to be recorded on a transaction. In current
exchanges such information may be included but be restricted to certain
parties, or only be made available (say) 30 minutes after the transaction.
The first author was asked by a stockbroking firm how such things could
be made consistent with a blockchain where everything was public. The
answers seemed obvious: use encryption where the subsequent access did
not increase with the passage of time, and exact delay encryption (possi-
bly coupled with ordinary encryption) where is did. However he did not
then know how to implement exact delay encryption without a TTP, so in
a strong sense that conversation inspired the present paper.

The motivation for keeping transaction details secret is to keep the trad-
ing activity of some investor or broker secret so that others cannot make use
of the information in deciding their own activity.

Such encryption can conceal who a transaction is between, but cannot
conceal the fact that trading in some security (for example) is happening. It
is, however, possible for anyone who owns something to transfer it between
two identities he owns, and until the delayed information is in the open it
will look exactly the same as a real transaction. Thus real trades can, to
some extent at least, be camouflaged.

A smart contract is a piece of code representing a contract between two
or more parties. It is placed on the blockchain, determined when it is to be
executed and then carries out transactions. Because the blockchain can be
read by all its users, anyone can examine the code. This means

7



• The conditions for executing the contract, and the nature of the trade
it will execute, are public as soon as the code appears in the blockchain.

• Other parties are free to look for weaknesses in the contract, which
might either be caused by a trader making an error or judgement or
introducing a bug into the smart contract. Others can discover and
contemplate such errors at their leisure and affect the market or take
up positions which exploit the weakness: most likely to their own
advantage and damaging one or more parties involved in it. The best
known actual security flaw in a smart contract, the DAO attack [7]
fell into this category.

Where the contract simply states the time at which it will be executed,
it is straightforward to protect against this sort of problem: simply delay-
encrypt the code of the contract until that time. The nodes with responsi-
bility to execute it then decrypt it and run it at such a t.

Exact delay encryption is clearly also of great use in distributed sealed-
bid auction and tendering protocols: bids must be sealed by delay ecryption
until the time (after the end of bidding) when they are opened. This is
effectively an anti-corruption measure. Who they open to (maybe everyone,
all bidders, or an auctioneer) after auction closes is a matter for the designer.

It might also be used in e-voting protocols to prevent anyone from count-
ing votes until the polls have closed.

3 Implementation

In any implementation we need to assess the threat model to decide how
many parties need to generate keys for each time, and what number of them
can be considered trustworthy.

Is there any group of nodes that are considered more trustworthy: per-
haps the miners in a private blockchain environment? If so should generating
key pairs be limited to them?

In environments like a public blockchain, what motivation do we need
to provide for participants to perform their role and do so in a trustwor-
thy]fashion. We imagine that the reward will take a similar form to that
for mining, and that a node will be severely penalised for doing something
wrong unless (in the case of failure to post keys) it has a good excuse. Not-
ing that a node passing keys early to its friends is not necessarily spottable,
we can institute a mechanism whereby any node that demonstrates knowl-
edge of another node’s secret key early can claim a large penalty from the

8



provider as well as disgracing it.
By and large the penalties for failing in one’s duty might be so large that

the likelihood of any not delivering keys as required is very small.
It will also have to be decided what granularity time will have: will key

pairs be issued per second, minute, hour or day?
If this granularity is smaller than the rate at which a blockchain delivers

blocks, then we cannot rely on the blockchain as the mechanism for broad-
casting secret keys, though there is no problem with recording the public
keys, since they can be posted in groups before they are needed. Note that
a secret key can always be verified relative to an already-posted public one.
We will discuss this issue again later.

There are various potential mechanisms here, depending on circum-
stances. It may well be that some external agency is accepted as a reli-
able model of time and is used for the timestamping of blocks. Possibly
the release and availability of secret keys can be judged by a collective or
fault-tolerant mechanism judged relative to this.

It must be clear, however, that the time intervals between keys which
must be verifiably released at regular intervals must be several times greater
than the latency of the network connecting the nodes. And the times at
which individual nodes have released information will vary a little from the
target t depending on the transmission of released keys.

If the only scource of trading information is the underlying blockchain
then there may be no reason to have a higher rate of release of secret keys.
However in general we must expect that information is probably coming from
more rapid data streams. As discussed later, we do not normally expect the
blockchain to be the source of timing information in delay as all nodes can
be expected to own an accurate clock.

4 Generalised escrow

One can imagine a generalised delay operator that releases its contents under
more general circumstances than the arrival of a particular time. If r is
condition based on time t and features of the state s that are

• Observable deterministically everywhere with the same result.

• Once true remain true: a change of state cannot make such a condition
false when it was true. Therefore in essence they are equivalent to
something of the form “There has been a past state such that P”. We
will examine this concept further below.

9



then it makes sense to escrow information x so that it is released when r is
true. The conditions above make it unambiguous when x is to be released,
even when different nodes may make independent assessments at silightly
different times.

We can thus imagine a generalised form of delay that we can write
escrow(x, r). This can be implemented in exactly the same way as delay
except that it is not reasonable to expect nodes to create key-pairs tied
to arbitrary conditions without prompting. It follows that anyone creating
escrow(x, r) will need to obtain the keys from enough parties and tie them
to r so that it can create the encrypted shares of x that are needed. There
will thus need to be a marketplace of keys which can be obtained from other
parties who are prepared to release a public key tied to r (by signature) and
monitor r to determine when to release the secret key.

We can imagine that there may be keys available for sale by potential
(identifiable) Wi, and that a user will group them, placing such a group
on the blockchain in advance of them being needed with an anti-double-
spending mechanism being used to prevent any being used in different
groups. When used the r will be attached to the entry, for example at
a location specified in the blockchain with the entry for the group.

Such keys can be reused if multiple xs are escrowed by the same r.
Examples of r are

• t ≥ t0 (giving the equivalent of delay(·, t0))

• Company X has breached condition p (determiniable from observable
information) at some previous time.

• A legal warrant for the release of x has been placed on the blockchain.

• X has committed a demonstrated crime on the blockchain.

• The price of shares in X has exceeded £5

• The price of shares in X was greater than £5 on 20 September 2017.

The information required to evaluate such r should be stored in a form
where they can reliably be computed: the same timed information should
be available to all. Of course information in the blockchain automatically
has this property.

Earlier in this paper we imagined that delay could be used to secure
smart contracts that are triggered by a specific time. We can now generalise
this to ones triggered by some computed condition r on the blockchain.

10



4.1 Trigger conditions on escrow

When considering delay and escrow we need to understand the nature of
time. For delay as discussed above we assumed that the time required by
the nodes involved is real time as measured by essentially agreeing clocks
they hold.

However when we consider escrow governed by conditions intended to be
determined by the blockchain, plus time, it only makes sense to consider time
as measured by the blockchain: there must be a point in history as recorded
on the blockchain, including its timestamps, at which the condition is true.

Potentially blockchain states are undone because blocks are replaced. If
escrowed data has been released on account of the now-dead block, it is
not really believable that it can be un-released when the block disappears.
Therefore, without special arguments, a node N should only release a secret
key ski counterpart to a pki bound to condition r when r is true in a block
that N knows to be immutable. A fundamental property we assume of
blockchains is that once node N knows block B is immutable then eventually
all will. In this case it follows that if N is trustworthy and releases its ski,
then all other trustworthy nodes with secret keys bound to do so eventually.

It follows from this that in a public blockchain where blocks do not
become immutable until some time after they are created, escrow conditions
must, either explicitly or implicitly, state that escrow(x, r) only opens x
when r has been true for sufficiently long.

The nature of the conditions we have assumed means that if there is a
point in the settled blockchain history when an r is true, it will remain true
afterwards.

We conclude that the nature of time in delay and escrow is different.
In the former time means ordinary time, and release will be prompt. In the
second time means logical time measured by the immutable history of the
blockchain, and release need not be that prompt, though it is inevitable.
How prompt it is will depend on the characteristics of the blockchain where
everything is happening.

Returning for a moment to the subject of securing smart contracts, it is
clear that any smart contract can now be separated into the condition that
triggers it (which must be public) and escrowed code that it performed on
this event. One of the actions of such a contract may be to perform another
smart contract which is similarly delayed: our framework supports arbitrary
nesting of this sort.

11



5 Second approach to escrow

With delay, the use of pairs of public and secret keys for each time point
means that many nodes can delay to the same time without creating mul-
tiple times. With general escrow, this multiple use is not so likely. An
alternate approach to escrow is for the node A creating escrow(x, r) to cre-
ate n threshold shares si of some key k such that ‘{x}k is the core of the
escrow value, and send the pairs (si, r) encrypted to the Wi. Wi now has
the duty to release si when r is true.

It would not normally make sense to send shares of x itself, as opposed
to a key k encrypting x, to the Wi, as revelation of the si would then tell x
to everyone, not just those who are privy to the escrow value.

This second approach avoids the work and potential quantum vulnera-
bility of the approach using public key cryptography, but means that the
Wi need to be slightly more actively involved. It also means that no reuse
is possible.

Of course the quantum vulnerability of a given public key algorithm is
best judged on an evolving basis and will be related to the length of time
a key may have to last. With delay encryption, we have the opportunity
to bound this; with general escrow, this may be impossible. As remarked
earlier, we have the opportunity to update the algorithm and/or key length
as time progresses.

6 Delay as an aid to blockchain security: an unbi-
assable random oracle

Cryptographic signature makes it possible for one blockchain node to recog-
nise the origin of messages from others. Where a node is trustworthy we
may be able to guarantee that the messages it is obliged to send will be sent,
and we can strive to make message transmission reliable. However either
because of an innocent power or communication outage or a loss of service
attack on nodes or intrastructure, a communication might not get through
despite the best intentions of the sender.

On the other hand sending a message early might well cause undesired
information leakage or insecurity. Consider the following example: it is
highly desirable, in a blockchain, to have an agreed source of random num-
bers associated with a series of times, for example the times at which it is
intended that blocks are produced. Given that no single node is trusted, it
seems appropriate that every node, or at least sufficient nodes that there will

12



be at least several trustworthy amongst them, contribute to each of them.
(Of course if there were a single universally trusted and availabie source
of genuinely random numbers this would not be necessary, but that seems
unlikely.)

Suppose that each of a sufficient collection of nodes has committed a
value for a given time tn by writing a hash of it in the blockchain, and such
values are now immutable. Then some of these will be trustworthy and ran-
dom. If, at time tn, all these Vnm are released by the nodes Nm so that they
can be checked against the committed ones, then as can treat the bitwise
exclusive or of them as a reliable random oracle, in other words a source of
random numbers that cannot be controlled by a small group of parties and
thus each node can regard it as completely unbiassed. For necessarily the
trustworthy nodes will have created their own values randomly, uniformly
and independently of all the others, so Vn, the XOR of them, is random
string of independent bits whatever villainy the others have engaged in.

Unfortunately we cannot rely on either an individual trustworthy or
untrustworthy node to actually deliver their Vnm at the right time. The
trustworthy ones (the good guys) might get blocked for the reasons above,
and the untrustworthy ones for the same or through sheer villainy.

There are two choices that obviously result: to accept the values that
are revealed (noting the danger that different parties might not see the same
ones) or abandon the calculation in the case where they are not all available.

The fact that trustworthy parties may innocently fail to deliver their
obligations makes it unreasonable to penalise non-deliverers severely. Given
this, abandoning the calculation when someone fails to deliver is not prac-
tical since this might always be the case. Even if we could ensure that all
parties see the same set of Vnm, there is also a distinct danger in only using
the Vnm that do appear. This is that villains, who may be colluding with
each other, may wait until the good guys have released their shares and
then, in full knowledge or the effect would have on the final result, decide
which of their own Vnm to release to optimise the resulting Vn for them: this
is not acceptable since we do not want them to be able to do this.

While in some circumstances one might be able to argue that the above
attack is not feasible, it would be better if it were not there at all.

It can be eliminated by delay encryption. First we note that while non-
delivery of obligations is difficult to penalise because it is hard to lay the
blame, no such restraint is necessary when a node delivers a signed contribu-
tion that is demonstrably wrong by the underlying protocol. In human terms
it is like the difference between a sin of omission and one of commission.

Suppose that each node Nm has had to commit via hashing to its Vnm,

13



and has the obligation (either at the same time or a later one) to place the
delay encryption of Vmn on the blockchain before some time t′n < tn, where
this will be immutable by tn. It is now agreed that only those Vnm which
have both the hash commitment and delay present at time t′n will count
towards the calculation of Vn. We note

• By blockchain properties all will agree on which count, and at t′n no
node can have any idea what any of the Vnm provided by another
trustworthy party is. It follows that provided that at least two good
guys do achieve this, no-one can in any way control the final Vn. They
can affect it: if a villain makes the choice to take part or not it is
changing Vn, but from its own point of view it cannot change the
distribution of possible outcomes.

• The delayed version of Vnm can be used to reveal this contribution in
the event that Nm does not do so at tn.

• When Vnm is revealed directly or through unwinding the delay, the
result should be checked against the hash commitment. This is helpful
for the delayed version as the nature of threshold encryption is that a
supposed example of this decoded from different shares might produce
different answers if it was not genuine. Thus we cannot tell that any
collection of k (the threshold) values is not drawn from a true threshold
encryption.

• Analysing this, we realise that our new protocol does not guarantee
to deliver a random oracle, but instead guarantees to deliver either a
value Vn that is random and independent of any party’s choice, or the
demonstration that one or more of the nodes has committed a sin of
commission.

• Of course much communication at time tn, namely of the time-release
keys sn, is necessary to implement this. However the fault tolerant
nature of delay encryption gives considerable latitude for individual
communications to fail.

Such a random oracle can be enormously useful in a blockchain: it pro-
vides a mechanism for the blockchain itself to make choices, for example in
mining or performing some desirable role. (In many informal discussion of
blockchain protocols and algorithms, one reads about the blockchain choos-
ing this or that, with the implication being that the choice is unbiassed and
secure. The random oracle gives a secure implementation of this.)

14



This example shows that we can use delay encryption to implement
protocols that require nodes to deliver values at a specific time that have
hitherto been secret, even in a blockchain environment where nodes and
communication do not have to be reliable. It prevents non-compliant nodes
hiding behind supposed communications failures. Mischief will be plain for
all to see, and the villains can be named, shamed and punished.

Looked at like this, the use of delay encryption in this way within the
blockchain is enormously similar to its use in [4].

7 Conclusions

We have demonstrated that threshold cryptography is the key to imple-
menting exact delay encryption in an environment where the majority of
players can be assumed trustworthy. We need to be able to pick a selection
of workers, for example in a blockchain, whom we can trust to satisfy the
condition that less than k will not perform their roles both accurately and
with integrity.

The random oracle that we described in the last section may well be
involved in picking the selection of nodes that implement delay encryption.
Since the random oracle depends heavily on delay encryption, this seems
to be circular. However it is not since the oracle that picked the nodes
to implement delay to moment tn depended only on the correctness and
security of delay to strictly earlier times. Thus, like much of the coherence
of the blockchain, this becomes an inductive security argument.

Delay may benefit from, but does not require, a blockchain to support it.
The notions of escrow we have provided really require a blockchain because
we need that nodes will agree on the sequence of states so that they do not
differ on the truth or falsity of the trigger conditions.

The essential feature of both the delay and blockchain-based escrow we
have defined it that all trustworthy nodes will agree on when and whether
to release their own share of the value being released. Note that usually we
want that a delay or escrow value remains a distinct term Y which is sent
between players and that in order to get at the unencrypted value x that
is being delayed or escrowed any node will both need Y and whatever us
released by the Wi at the point of release. This is crucial to enable players
to be selective about to whom they send, for example, a delay encryption.

15



References

[1] Time-Lock Encryption. http://www.gwern.net/Self-decrypting.
2011.

[2] R.L. Rivest, A. Shamir and D.A. Wagner. Time-
lock puzzles and timed-release crypto. 1996.
http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf

[3] A.W. Roscoe and Bangdao Chen The greening of blockchain mining,
Available from www.tbtl.com

[4] A.W. Roscoe, Detecting failed attacks on human-interactive security
protocols. In Cambridge International Workshop on Security Protocols
(pp. 181-197). Springer, Cham., 2016

[5] A.W. Roscoe and P.Y.A. Ryan. Auditable PAKEs: approaching fair ex-
change without a TTP. Cambridge International Workshop on Security
Protocols. Springer, Cham, 2017.

[6] A. Shamir, How to share a secret. Communications of the ACM 22.11
(1979): 612-613.

[7] Mehar, Muhammad Izhar, Charles Louis Shier, Alana Giambattista,
Elgar Gong, Gabrielle Fletcher, Ryan Sanayhie, Henry M. Kim, and
Marek Laskowski. Understanding a revolutionary and flawed grand ex-
periment in blockchain: the DAO attack. Journal of Cases on Informa-
tion Technology (JCIT) 21.1 (2019): 19-32.

16


