Temporal signature in the blockchain

A W Roscoe
Chieftin Lab, Shenzhen, and
University College Oxford Blockchain Research Centre

Abstract

Every blockchain requires a form of cryptographic hash to main-
tain its basic integrity, linking blocks as well as contributing to cryp-
tographic signature. A secure and long lasting blockchain provides a
secure and linear notion of timestamping. In this paper we explain
how the latter can be used in constructing novel hash-based signatures
and investigate whether such signatures can be used to maintain the
structure of the blockchain.

1 Introduction

A blockchain is a linked list of data blocks, each being within some size
limits (typically up to a few Mb) built using a specified format though with
no general limitation on what it can contain, with each containing a strong
cryptographic hash of its predecessor. The identity of the blockchain con-
tains the contents of block 0. With that as its root, the blockchain is thus
a tree rooted at Block 0: it is limited to the set of compliant blocks where
the hash pointers eventually lead to this root. Each blockchain is also asso-
ciated with rules about how new blocks are created in a decentralised and
distributed environment, which the said rules always encouraging agreement
on a linear sequence of blocks starting with Block 0, where all branching
away from that sequence is eventually disregarded. The hash function is as-
sumed to be preimage resistent and collision free, meaning that for the life
of the blockchain it is believed that it is essentially impossible to calculate
two values that hash to the same image, or a single value that hashes to
any image that has not itself been calculated with the function. By this
means, if we know a series of blocks where each contains the hash of the
previous one, and someone else contains a second such series, and one con-
tains block 0 at the end, the two series are the same between any member



the two have in common and their common end at Block 0. When B, is
in this sequence in the nth position, and no further branching is possible at
its own or a lower level according to the protocol for building blocks, then
we say that B, is immutable. Looking at the structure from the outside or
from the perspective of a single node, the immutable part can only grow.
The immutable sequence seen by a node may either equal or be a prefix of
the immutable sequence we see from the outside.

One of the core assumptions about blockchains is that they can contain
a limited number of bad nodes who do not follow protocol. Depending on
the nature of the protocol it may be possible for such a node to post a block
at any time whose hash field is any chosen block and therefore a contender
for its successor, even though it may already have a successor and the new
one has no hope of being accepted. When we say that a block is immutable
in such cases, we more precisely mean that no block added by anyone at this
or an earlier place would be believed by any trustworthy node running the
blockchain according to its rules.

The linear order that emerges amongst immutable blocks creates a nat-
ural temporal order amongst them. The node assembling the block can,
if the protocol calls for it, add a time stamp to the block which is close
to real time. We will discuss some options for this, as well as options for
incorporating times within blocks, later in this paper.

We make two further assumptions about time. The first is that any node
has a reasonably accurate idea of what the time is at any moment, thanks
to an inbuilt clock potentially reinforced by (a) long term observations of
the system and (b) observations of external sources such as GPS signals.
This inbuilt clock is at least an order of magnitude more accurate than the
typical gap between block time stamps. Thus any significant untruths told
by untrustworthy nodes about the time should be apparent to all. The
second is that blocks will continue to be generated while the blockchain is
current, and that a block will appear with a time stamp at least T' within
some bound € of the actual time T'. If there were a lower bound on the size
of a block that was greater than that of one empty aside from housekeeping
and formatting, this second assumption would map to one about the rate at
which material is generated to put in the blockchain. We require no further
assumptions about how blocks are agreed, so we cover both public and
private models. It goes without saying that where the security of a signature
model depends on the accuracy or security of a blockchain, these need to
be assessed carefully. In the next section we set out our assumptions about
blockchains and the nature of time within them. Our aim in the first sections
of this paper is to build efficient models of cryptographic signature that



exploit the blockchain model set out above. We then examine corresponding
models of services akin to PKI for these.

2 Blockchain assumptions

For us, a blockchain is a series of blocks each of which contains the strong
cryptographic hash of its predecessor, and where each of the blocks contains
a timestamp which is strictly greater than that of the previous block and
which is closely related to the real time at which the block was posted.
Specifically the time at which block B, is posted is within € > 0 of the
timestamp therein, and that any attempt to post a block with a more remote
timestamp will not be successful.

For blocks posted at and around the true head of the blockchain, we
expect this to be managed by the general consensus and approval process.
Any attempt to post a block remote from the current head can be countered,
for example, by the techniques proposed in [4] which show how to make
attempts to add a successor to a long-standing block readily detectable. We
believe that the signature mechanisms used there must not depend on the
time-based methods set out in this present paper, if these are supported
directly or indirectly by the same blockchain.

The best-known way of limiting the rate of block creation is Proof of
Work (PoW), but it should also be possible to limit it by adding an agreed
rate of creation to the constraint already expressed about accuracy of times-
tamps. It may be agreed that the next block’s timestamp must be at least
D greater than the previous one’s as well as accurate. One way of managing
this is via the hash clock of [5] in which previous block creators securely vote
on when the time for the next block has come.

3 Extending the life of a signature

Suppose that Alice has an established key using a signature algorithm that
we can now be confident will be secure until future time 7. An example of
this would be an RSA key where we can be confident that the base cannot be
factored either by conventional means (because the time between the key’s
original publication and 7T is less than the minimum reasonably possible
for keys of the given length) or on a quantum computer (because we are
confident that no sufficiently powerful one will be built before T').

There is no particular benefit in making T large here, and making a
correspondingly stronger assumption about the signature algorithm. All we



really require is that it will still be secure at ¢t + €, where ¢ is the timestamp
of the block it is placed in.

If we can give evidence that the signature was created before T, to-
gether with evidence of exactly what was signed then, we can safely accept
the signature as secure, even at a time 77 > T when the signature algo-
rithm is known to be insecure if used afresh. This provides an interesting
form of signature. Suppose that S(A, X) is the signature algorithm referred
to above, and that hash(-) is a hash function that we are confident will
remain secure well beyond T'. To sign X, place S(A, X), hash(X)) on the
blockchain, ensuring it gets a timestamp less than T'— €. As an alternative
to hash(X) we could use X, but of course that might take a lot more space
in general and it would make X public. Then for as long as hash(-) is second
preimage resistant, and was collision free at the time Ty the signature was
created, we can be confident in the signature. Suppose 7" > T is such a
time.

This inference is valid because (a) as no collisions were known at T,
we can disregard the possibility that X is in one of the few collision pairs
that might be known by 7”. Thus the intruder will, at 7", know no value
Y other than X such that hash(X) = hash(Y'). Furthermore, this is true
even if the signature is made by an A under the control of the intruder.
(b) We know that A signed something that hashed to hash(X) at the time
when this signature was secure. (c) Thus anything presented by anyone at
T’ as X must actually be the X that A signed.! We can envisage that the
choice of .S might be made from options laid down in the blockchain itself
which change from time to time. The signature S might be the compound
of several different functions. As the composition of the choice varies, it is
almost certain that any agent A will have to publish new public keys. It
might choose to do this by interacting with a certification authority in a
PKI, or by publishing the new public key(s) signed in the blockchain at a
time when the means of signature are still clearly valid.

Thus the blockchain timing model gives us a robust way of updating
public keys. This is an issue which we will explore more in subsequent
sections, where key renewal is necessary in a systematic way.

The above begs the question about what happens when we fear that the
hash used may become compromised. One solution to this is for anyone
who knows the X of a signature pair (S(A, X), hash(X)) that is in future
danger to place (hash(X),hash’/(X)) on the blockchain within the valid-
ity of hash(X) for a stronger hash’. This can be checked by anyone else

!The inference here is easier if S(A, X) is actually a signature of hash(X).



who knows X, and combination of the earlier (S(A, X), hash(X)) and the
later (hash(X),hash/(X)) are equivalent to (S(A,X),hash’(X)) at the ear-
lier time. By and large, however, it is probably better to avoid this by not
compromising on the strength of hash.

The methods set out in this section demonstrates how our timing as-
sumptions about blockchains can reliably extend the life of signatures, cre-
ating a form of temporal signature, though we will reserve this term for the
sharper use of time in subsequent sections.

We remark that this method of extended signature certainly uses the
assumptions about time stamps set out in Section 77, but not sharply since
for conventional signatures there is no known drop-dead date, but rather
informed guessing. In the next section we will see a technique where drop-
dead times become a reality.

4 Hash-based temporal signature

While methods of hash-based signature, notably one-shot schemes such as
Lamport’s [1] and similar, which can be enhanced by Merkel trees, have
been known for a significant time, they are expensive and typically stateful,
in the sense that a given key pair is hard to distribute between different
instances of an identity.

Ours does not have this disadvantage, but it does make an additional
assumption about the availability of a timing service that can be provided by
a blockchain. Indeed in this paper we will generally assume it is a blockchain
satisfying the assumptions of Section ?7.

We present two variants of our scheme: in one each key is ab initio
associated with a future time, and another these times are created later.
We also demonstrate how analogues of PKI and Certification Authorities
(CAs) can work in our new space, including later providing an analogue of
zero-knowledge proof.

The method we describe is extremely efficient in the amount of cryp-
tographic calculation required and therefore offer prospects of security to
applications such as IoT where asymmetric cryptography is barred on cost
grounds rather than because of the worry of future quantum computers, or
simply where a lot of things need to be signed.

Our schemes are both based on circumstances where A’s signature is
simply the hash of what is to be signed with a key or nonce that A knows
at that time but no-one else does, but which B will know later and further
more know it was uniquely associated with A. In that sense it resembles the



TESLA stream authentication protocol [2] and the interactive authentica-
tion scheme of [3]. However we are able to develop a related idea into a full
signature scheme complete with certification authorities primarily because
of the popularity of architectures such as the blockchain that establish an
unambiguous form of common knowledge and time-stamping.

We now show how to create a means of “cryptographic signature” based
only on hashing. It is not the first such, since there are well established
ones such as Lamport Signatures [1]. Ours is quite different and has the
advantages that there is no bound on how many times a given key can be
used, and that it is extremely cheap to create, use and store.

Our model of signature will work in blockchain systems using their intrin-
sic time-stamping, and others where there is a trusted third party operating
a bulletin board with time-stamps, or indeed any structure that achieves the
model of a universally writable time-stamping database where all nodes get
a consistent view and, given any time-stamp ¢, can find a moment beyond
which all future data will get a time-stamp strictly greater than ¢.

Usually, though not invariably, parties writing to the blockchain will sign
the objects they put there.

We are all familiar with digital signature schemes based on one-way
functions to the extent that the very definition of a cryptographic signature
frequently assumes the existence of private and public keys. Ours does
not. Thus while our scheme satisfies the requirements at the start of the
Wikipedia article on digital signatures:

A digital signature is a mathematical scheme for demonstrating
the authenticity of digital messages or documents. A valid digital
signature gives a recipient reason to believe that the message
was created by a known sender (authentication), that the sender
cannot deny having sent the message (non-repudiation), and that
the message was not altered in transit (integrity).

We term this the extensional definition, since it sets out what has to be
achieved without being specific about how it is to be done.

Our method does not, however, operate in the way implied by the “formal
definition” given there:

Formally, a digital signature scheme is a triple of probabilis-
tic polynomial time algorithms, (G, S, V), satisfying: G (key-
generator) generates a public key, pk, and a corresponding pri-
vate key, sk, on input 1", where n is the security parameter. S
(signing) returns a tag, ¢, on the inputs: the private key, sk,



and a string, x. V (verifying) outputs accepted or rejected on
the inputs: the public key, pk, a string, x, and a tag, t. For
correctness, S and V must satisfy

Prl(pk, sk) € G(1"), V (pk,z, S(sk,z)) = accepted] = 1

A digital signature scheme is secure if for every non-uniform
probabilistic polynomial time adversary, A

Pr((pk, sk) € GA™), (z,t) € ASCR) (pk, 17), z & Q, V (pk, x,t) = accepted] < negl(n)

where AS(%+) denotes that A has access to the oracle, S(sk,.),
and @ denotes the set of the queries on S made by A, which
knows the public key, pk, and the security parameter, n.

Note that we require that any adversary cannot directly query
the string, x, on S.

We term this the intensional definition of a signature, since it strongly im-
plies how the objective represented by the extensional definition is to be
achieved. There is an interesting discussion in [3] of the relationship of a
similar form of signature to the intensional one.

We term this temporal signature: it is based on simple but completely
different ideas to the usually seen one.

We will couch this signature in terms of the blockchain, but it will ap-
ply to any situation where players can unambiguously publish packets in a
common medium where all get a common view of what has been written
and when, and the fact that this is so is common knowledge.

We will assume that the time at the start of operation is 1, and that
the blockchain or bulletin board is initialised with a special block or data
written by some privileged initialisation or by the individual nodes at some
point where they are trusted. This information has time 0 which strictly
precedes all times of ordinary written data.

Inter alia this initial block contains, for each node A, a finite set of key
certificates of the form? (hash(k, A,t),t, A) where k are chosen at random
from a large set and ¢ varies over future times. Thus each node will typically
have keys labelled by a spread of (initially) future times.

%In using a standard cryptographic hash function here, we are assuming perfect cryp-
tography in the the forms of the terms used. It may well be wise to use different forms of
the terms (e.g. reordering or replicating components of the hashed terms, or using hash
combiners that combine multiple hash values into a single ‘super-hash’) to counter weak-
nesses in specific (e.g. iterative) hash constructions. Of course careful and conservative
choices of the hash functions themselves is recommended.



The fundamental idea is that the use of k (as opposed to hash(k, A, t)
by someone before time t proves that this someone is A, and that A will
release k at time ¢ allowing anyone to check such uses, deducing they were
by A.

Thus to sign X with k we have A compute hash(k, A, X) and place it
on the blockchain or bulletin board before ¢ and so it gets a stamp of less
than ¢.

Of course A can compromise her own signatures by releasing k early, but
this would be no different to her disclosing her conventional secret key. Doing
so would damage her in much the same way that disclosing her conventional
secret key would. Is her duty to broadcast & when she knows that no further
block will appear with a timestamp less than ¢. She can do this by writing
it into the blockchain or releasing it by some other means. Because k has
been precommitted there is no need for A to sign this release.

Note that once the keys are established, signature only requires the com-
putation of a single cryptographic hash, and verification, where the key be-
longs to the initial set, requires at most two hashes. These are the hash of
the data with the now-revealed key, and the hash that verifies the same key
whose hash was initially published.

We have the option to save (at least then) one of these hashes by verifying
each key via the consensus mechanism at the point it is published openly. Of
course this can only be done if the publication is in the blockchain. In other
words, when A places k openly in the blockchain, it should be apparent to
all that this is a reveal of a key, and those responsible for consensus and
block creation must verify k before publishing it.

This is an instance of a general fact: if the hash of any value v is already
in the blockchain but v has not been generally released, then releasing v
gives it the same status as hash(v): if it is immutable then so is v itself,
without placing v unhashed on the blockchain. Anyone who sees v is able
to verify its correspondence to hash(v).

4.1 Refreshing keys

Since signatures can only be checked once the appropriate time has been
reached, in most case it is desirable, when signing a message, to use a nearly
expired key. Given that each node is presumably only allowed a finite num-
ber of initial keys, such a key from that set is not always available. However
it is straightforward to allow A to add further keys.

Suppose A will shortly enter a time-frame where it has no keys or only a
few, but it still has a key (A, k,t) that will expire before this. Then she can



create as many new keys randomly (or perhaps pseudo-randomly) as she
wishes, choosing a future time for each, and sign their certificates (either
collectively or individually) with k as new keys for A, each with their own
time beyond t.

The strategy for doing this will depend on the expected time-frame of
the service being created, namely for how long will an agent wish to create
signatures. This might be for some finite period that can be divided up
into equal parts ab initio with this division and further subdivisions used to
structure the key space. Or is might be indefinite, in which case one can do
the same but, near the end of an initially chosen epoch, new keys are signed
for another. By (say) doubling the lengths of successive epochs, it is easy
to keep the chain required to check each key down to logarithmic length.

So for example each node could be initialised with keys that are revealed
at 2" for n < N for some arbitrary M > 0. Note that initially the gap
between consecutive keys is a power of 2. We will maintain this as an
invariant and also the fact that the largest ¢ is a power of 2,

At each time r = Z;:ol 5;2". When the current time is (say) one less
than the last time before a gap of length more than one (r,r 4 2%), it creates
new keys for the times r+1,7+2,...74+25"1. as far as it has to to maintain
this invariant.

So it will create new keys as follows:

e at time 1 for 3,

e at time 3 for 5 and 6,
e at time 5 for 7,

e at time 7 for 9,10,12,
e and so on...

When it reaches 2V — 1 it adds a key for 2V at the end.

With this approach, every time a node uses a new key it can check it
by following a chain back to time 0 with length bounded by 2logs t. To un-
derstand this, observe that every integer m greater than 0 can be expressed
uniquely in the binary form m = S, = Y-?_, 2% where the g, are a strictly
decreasing decreasing sequence. Notice that both gy and p are no greater
than logom. In general the key for time S, = > 7_¢r (0 < a < p) was
signed with the key for time S,_1, and the key for 2° was created either at
time 0 or signed using time 2°~!. Thus the checking chain is composed of
two parts neither of which is longer than log m.



Of course we have the same option about checking keys as before: those
building a blockchain are responsible for ensuring that the public versions
of keys are consistent with their previously published hashes.

In other words if a new key (hash(A, k,t), A,t), ((hash(A, k,t), A, t, k'), ref (k"))
is published signed by A using k’ which is revealed at ¢’ < ¢ then all ‘mining’
nodes should check this at ¢ resulting in a certificate of agreement that k is
a good key for A to be revealed at t'.

When k is ultimately released at t, it should be checked as outlined
above.

We could even extend the role of the blockchain to verifying all individual
signatures of this style (rather than merely signatures on keys). Thus this
style of temporal signature could become totally part of the blockchain and
its mining protocol, rather than something that individual nodes check for
themselves.

5 Alternative temporal signature

We have presented a model in which the time of each key is committed in
advance. An obvious alternative is for keys to be created and their hashes
bound to an identity without a fixed release time. The identity could then
sign one of more files with the key in the same way as above: placing the
signed document in the blockchain and only releasing the key (whether into
the blockchain or not) once it has seem all the signed documents there.

Imagine the following scenario: Alice has created key k, signing the key
certificate (A, hash(A,k)) and placing it on the blockchain. After the sig-
nature of the certificate has been checked, she signs a number of documents
with k& and places them (F},..., F,) on the blockchain. Once she has seen
they are all there in such a way that they are all immutably present there
she releases k.

This is not secure: Eve can potentially delay the final write while learning
k, and sign further documents with it “on behalf of” Alice before finally
releasing k. If it then can block Alice from intervening (or if Alice does not
notice quickly) the signatures will be believed.

This model can be rescued: one solution is to have Alice use each such
keys only once. By checking that the signed document is on the blockchain
before releasing the key, making the blockchain consensus prevents “double
spending” of k appears to prevent attacks.

Extending this: Alice can count how many files she has signed with &
at the same time as checking they are all there. She then signs a specially

10



formatted message such as Alice has signed 23 files with hash(A, k) on the
blockchain — signed with k& —and checks this is there before releasing k, which
we will now assume is done by placing it on the blockchain. The consensus
protocol only accepts k& when the numbers tally. Here we are using the
properties of our blockchain being immutable and permanent once a write
is made and agreed. As a further alternative she can replace the count
with the simple message No more signatures with hash(A, k), again signing
it with k. The consensus protocol only accepts the release of k when this
consistent. In both cases checking the signature on the message ending k
means that Eve cannot successfully end k early.

As an alternative to counting, she can observe the final time stamp ¢ of
one of the files signed by k in the blockchain, and place a message on the
blockchain which associates this time with the key. Again Alice makes sure
this message is there before releasing k. To verify a signature it is verified
that the signature has a time stamp no later than ¢. Essentially here we
are replacing the original pre-committed time for each time, by one that is
post-committed.

Refreshing keys is now much simpler than in the earlier case.

This method has the advantage of using keys efficiently: no key gets
wasted if there is nothing to sign with it at the time it is released. It has the
disadvantage of only really working with a blockchain consensus algorithm
or something very like it. It also needs more bookkeeping and might not
work as well when a given identity has more than one instance generating
signatures with a given key.

6 Public signatures, private data

An essential feature of our models is that signatures are placed on a com-
monly write-able, commonly readable time-stamped medium such as a blockchain.
This might seem to limit their usability, since in many applications agents
will wish to sign data that is only meant to be seen by less than all agent,
often only one other.

Nevertheless we really need everyone to be able to see all signatures and
identify their time-stamps and link them to their signing keys. In cases where
we want to have signatures checked by external parties such as blockchain
consistency, those doing the checking apparently need access to what it being
signed.

We can, however, overcome these problems easily by adopting the prin-
ciple that, other than when signing the keys used in the signature scheme,

11



which have their own protocols, it is hash(X) that is actually signed in the
senses set out above.

So we can decide that the signature of X by key k is actually (hash(X), hash(hash(X), k))
coupled perhaps with a key certificate for k. This allows the signature to
be checked by anyone without them knowing X. And of course anyone
who thinks they know X can hash it to check this equals the value in the
signature.

Thus we can maintain signatures in public without making the underly-
ing data public too.

Just as with public key signature, if we want to stop an attacker checking
a guess at X by hashing it, it may be necessary to add random bits as salt
to X to prevent this, naturally communicating such salt to those intended
to know X.

7 TKI or “PKI”

It is possible for one party to sign another’s keys as a token of validity in
our temporal setting just as much as it is with asymmetric signature.

A trusted third party can sign a certificate attesting that one or more
timed keys belonging to A are valid. Just as in an ordinary PKI such a
“Timed Key Infrastructure” can indicate limitations on the validity of the
keys it is signing. It can place a limit on how long or how many times it
permits A to refresh its own keys, or indeed ban such refreshment altogether.
Time is much more built into the core principles of a TKI than it is into a
PKI.

Note that the chain of trust in this case goes back to the start of time
through the keys of multiple parties.

e For a key k for A, it might have a chain of trust going back through
multiple A keys to one attested to A a time 0, or it might go back to
one attested to one signed at a later time by key kS0 of a key server
S0...

e Which is either attested back to time 0 by keys for S0, or eventually
back to one attested by a second server S1,

e and so on. All the key servers themselves must be certified in their
roles, just as in a regular PKI, and the chain of trust must get back
eventually to time 0.

12



As discussed above, the system or consensus mechanism can check sig-
natures and roles as time progresses. Where a key is signed (whether by a
TTP or via self refreshment) we would expect to see a checkable statement
setting out the authority on which this is done.

In a PKI it is not the secret key but the public key that is signed, which
limits the potential mischief a compromised key server can cause. In a TKI
the same is true: all the key server has to do is to sign the key certificate
with the hashed key in, not the open key. [Of course the mechanism by
which the server comes to know which identity the certificate is for, and
that it is valid, remains application dependent much as with PKIs.]

In some cases where signatures are validated by the blockchain, it might
be appropriate to let the blockchain act like as a CA, in the sense that a
node can provide one or more unsigned key certificates and the blockchain
votes (presumably in receipt of evidence of some sort) to accept the keys
and place them in the valid area. That would be analogous to putting such
keys into an extension of block 0.

We have not addressed here the question of how a new node Alice proves
her authenticity to a CA. To some extent this is always going to be an ad
hoc process which assumes (rightly or wrongly) that at the moment of proof
Alice has an authentic channel to CA. One thing that is commonly done
with traditional CAs is for Alice to ask CA to sign her public key and at
the same to prove that she knows her secret key via a zero-knowledge proof.
The zero-knowledge proof approaches we are aware all use constructs in the
asymmetric cryptography domain such as exponentiation. The well-known
ones are vulnerable to quantum computers. Therefore we offer the following
hash-based alternative, which while not providing a proof of knowledge, at
least gives arbitrarily strong evidence that the intruder does not know the
secret key.

In the following Alice is trying to construct something that she can use
in our schemes or something similar.

1. Alice chooses some M, which for the sake of convenience is even, and
random nonces N; for i € {1,..., M}.

2. She sends these to C'A, all in the form hash(A, N;,t) or hash(A, N;)
depending on whether or not there is a time ¢ attached to this key.

3. CA then picks M/2 indices at random from {1,..., M}, and so has
C(M, M/2) choices, or approximately (QMﬂ)/ﬂﬂM) It informs
Alice of its choice as a challenge set C.

13



4. Alice then reveals to CA exactly the N; for i € C, and CA then verifies
this choice.

5. CA then signs the rest of the hashes sent in the second step as Alice’s
key.

6. To sign an item with this key, Alice forms the hash of the object being
signed with all the N; not previously revealed: the unrevealed IN; thus
constitute the key.

In order to impersonate Alice by substituting his own choice of key, that
Alice has not picked and so does not know, he would have to guess correctly
at the set C'. For M=16 this gives him a chance of one in 12,870 and for
M=32 one in 601,080,390. The protocol establishes that no intruder can
know all the precursors of the hashes not in the challenge except for this
small probability.

8 Augmented temporal signature

The obvious disadvantage of the hash-based temporal signatures we have
introduced is that signatures cannot be checked immediately. In some ap-
plications this will not matter, but there is a straightforward way of over-
coming it where it does. That is to couple any such temporal signature with
a conventional one which we can be confident will be valid until the tem-
poral signing key is released. The algorithm and public key associated with
identity Alice can be updated on Alice’s TKI entry (together with upper
limits on when these can be used and verified), and each time she places
a signature on the blockchain it is accompanied by the then-appropriate
conventional one if she wishes it to be immediately verifiable.

Again, the conventional signature would be of a hash of the signed ob-
ject — for checking purposes the same hash used in the temporal signature.

It is debatable whether the temporal signature is necessary at all here,
since the proven-time use of a weak signature (provided augmented with a
hash of the underlying value) would fall within the scope of the methods
of Section ?77. We believe it is still valuable because it acts as a check-
able verification of the weak signature, and is practically free in terms of
calculation.

9 Temporal signature in support of the blockchain?

Consider the following facts:

14



e We have demonstrated that temporal signature is a viable mechanism
for signing entries placed in secure blockchains where times can be
believed.

e Blockchains and their integrity depend on attributing actions to known
agents, and thus to signatures, and may well have other signatures
built in, as for example in support shown for blocks etc.

e Any false part of a blockchain introduced later with fake timestamps
earlier than reality could easily spoof signatures using temporal keys
that had in fact been released where the fake time stamp makes it
appear they have not.

We conclude that temporal signature should not be used in any aspect of
blockchain construction or contribution to its basic security, and especially
not in mechanisms that contribute to the prevention of the belief by legiti-
mate nodes of spoof forks.

In other words, though there may be some exceptions that can be estab-
lished with great care, temporal signature is a way of taking advantage of the
high-integrity record keeping and agreed timings established by blockchains,
but not a way of creating these things themselves.

10 Conclusions

We have introduced two distinct approaches to using blockchain and similar
timing models for signature: one for extending existing mechanisms, and
one for enabling a new one. All depend on the timing assumptions made in
Section 77.

The first approach is a systematisation of the truth that a signature
provably made before the algorithm used is broken, remains valid even
after that point. The second uses the strong degree of coordination and
common knowledge achieved by blockchains to make the extremely efficient
form of authentication (based on knowledge of who knew what, when) al-
ready present in the TESLA stream protocol practical for a true signature
scheme, which nevertheless falls outside the usual intensional definition of
signature. We have therefore termed it temporal signature. This remains
limited, however, by the delay in the verifiability of signatures.

We have shown how a TKI, the analogue of a PKI for temporal signature,
works. Signing and signature checking are now very easy, particularly if the
provenance of keys is checked as time progresses. We have shown that there

15



are potentially issues where this form of signature is used as part of the
mechanism use in building blocks in the blockchain.

To support this we have created a version of zero-knowledge proof that
can establish the relationship between an agent Alice and the key that a CA
signs for her.

Blockchains are of course an application of cryptography. We have shown
here that, in turn, blockchains can contribute to the efficiency and persis-
tence of cryptographic signature.

Acknowledgements

The work reported in this paper was done at Chieftin Lab in 2017, It was
been improved by discussions with Cas Cremers and Peter Ryan.

References

[1] L. Lamport. Constructing digital signatues from a one-way function,
Technical Report SRI-CSL-88, 1979

[2] A. Perrig, R. Canetti, J.D. Tygar and D. Song, The TESLA broadcast
authentication protocol, RSA Cryptobytes, 5, 2005,

[3] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and R.
Needham. A new family of authentication protocols. ACM Operating
Systems Review, 32(4):9-20, October 1998

[4] A.W. Roscoe and Wang Lei. Taking the work out of blockchain mining,
Available from www.tbtl.com

[5] A.W. Roscoe and Bangdao Chen The greening of blockchain mining,
Available from www.tbtl.com

16



